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NOMENCLATURE

Some symbols defined in the text and used but briefly are not
included here.

az YP/p speed of sound for the mixture
Py \Tpo/po average speed of sound for the mixture
aij equation 4. 31a)
An equation .4. 3)
Anij equations (3. 47) and (3. 58)
Gn amplitude defined by equation (4. 4a)
ij equation (4. 31b)
Bn equation {4. 3)
nij equations (3, 48) and (3. 59)
ij equation (4. 31c)
C specific .ieat of particulate material
Cp’ Cv specific heats of gases
Ep’ﬁv specific heats of gas/particle mixture, equation (2. 3)
Cnij equation (4. 32)
le. equation 4. 31d)
Dni equation 4.2)
Dnij equation (4, 33)
e, stagnation internal energy of gases
epo stagnaticn internal energy of particulate material
ELZ equation (3. 18)
En2 equation (3. 16)
fs equation (3. 4)
fu equation (3. 5)
f equation (3. 6)
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equation (3,7)
equation (3, 22)
equation (3,23)
equation (3. 24)
equation (3.25)
equation (4.20)
equations (7. 1) and (7. 8)
eqgaation (8. 1)
equations (2. 5) and (8.2)
eguation (2. 8)
equation (4.21)
equation (3. 1)
equation (3. 2)
equation (3. 3)
equation (3. 19)
equation (3. 20)
equation (3.21)
equation (4. 22)
equation (3. 30)
equation (3, 31)
equation (3. 43)’
equation (3. 52)
complex wavenumber k = (w-icx.)/a.o
wavenumber for longitudinal or axial modes

wavenumber for three-dimensional normal modes
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equation ‘4. 23)

length of chamber

equation (3, 32)

mass flux of gases inward at the burning surface

mass flux of particulate material inward at the burning surface

_I\_dach number of the gases at the edge of the combustion zone,
u,/a
b’ "o

pressure
average pressure

equation (2. 11)

equation (2. 14)

perimeter of the chamber cross section

heat release by homogeneous reactions

equations (2. 6) and (8. 3)

equation (2.9)

mass averaged gas constant

mass averaged gas constant for the gas/particle mixture
response function, equation (7.4)

equations (3.42), (7.2), and (7.7)

total area of burning surface

cross section area

equation (2. 15)

temperature of gases in the chamber

temperature of particulate material

temperature of gases at the edge of the combustion zone

T-T
s
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1+ 24 ° 34 4+ equations (4.26) - (4.29)

a velocity of the gases
Ep velocity of the particulate material
speed of gases entering at the burning surface
v volume
wp rate of conversion of particulate material to gas (mass/vol-sec)
Q attenuation or growth constant
B equation (6. 13)
Y ratio of specific heats for the gases, Cp/cv
Y ratio of specific heats for the gas/particle mixture, 6p/6v
% mass fraction of particulate material, pp/pg
N equations (1. 6) and (4. 3)
P density of the gas/particle mixture, p = pg+pp
pg density of the gases
pp density of the particulate material
Po average density of the gas/particle mixture
o} diameter of particles
21 equation (2. 13)
4 equation /8. 9)
Ty equation (8. 10)
'bn equation (4. 2)
xy& normal mode shapes for one-dimensional problems
"bn normal mode shapes for three-dimensional problems
w, angular frequency for one-dimensional normal modes
W angular frequency for three-dimensional normal modes
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NONLINEAR BEHAVIOR OF ACOUSTIC WAVES

IN COMBUSTION CHAMBERS

F. E. C. Culick

ABSTRACT

This reportis concerned with the general problem of the nonlinear
growth and limiting amplitude of acoustic waves in a combustion chamber.
The analysis is intended to provide a formal framework within which prac-
tical problems can be treated with a minimum of effort and expense. There
are broadly three parts, First, the general conservation equations are
expanded in two small parameters, one characterizing the mean flow field
and one measuring the amplitude of oscillations, and then combined to
yield a nonlinear inhomogeneous wave equation. Second, the unsteady
pressure and velocity fields are expressed as syntheses of the normal
modes of the chamber, but with unknown time-varying amplitudes. This
procedure yields a representation of a gereral unsteady field as a system
of coupled nonlinear oscillators. Finally, the system of nonlinear equations
is treated by the method of averaging to produce a set of coupled nonlinear
first order differential equations for the amplitudes and phases of the
modes., These must be solved numerically, but results can be obtained
quite inexpensively,

Subject to the approximations used, the analysis is applicable to
any combustion chamber. The most interesting applications are probably
to solid rockets, liquid rockets, or thrust augmentors on jet engines.

The discussion of tiiisreportis oriented -owards solid propellant rockets,
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I. INTRODUCTION

The purpose of this analysis is to develop a suitable framework for
studying the growth and limiting amplitude of acoustic waves driven mainly
by interactions with combustion processes. Although the emphasis here is
on the problem as it arises in solid propellant rocket motors, other cases
can be treated in the same way. For example, since sources of mass and
energy within the volume are accounted for, unstable waves in liquid rocket
motors and engine thrust augmentors may be regarded as special cases.
The principal distinguishing features of the solid propellant motor are the
source of mass and energy at the boundary, and the non-unifor.m flow field.

A primary motivation is to produce analytical results which may be
used to interpret data. For many practical situations, elaborate numerical
~omputations based on the governing differential equations are inappropriate
owing to uncertainties in the required input information. The essential idea
pursued here is to convert the governing partial differential equations to a
set of ordinary nonlinear differential equations in time, for the amplitudes
of the normal modes of the chamber. The way in which this is done is very
strongly conditioned by previous work on the linear stability of the normal
modes [ Culick (1973 -1975)] and constitutes a development and extension of
recent work on nonlinear behavior, Culick (1971), The precursor of this work
was based on the observation that an oscillatory motion in a solid propellant
motor very often exhibits quite clean sinusoidal behavior even when the
amplitude attains a limiting value much larger than those at which nonlinear
effects are clearly evident in, for example, acoustic resonance tubes driven
at room temperature. This suggested that the acoustic field might be repre-
sented approximately in the form of a standing wave having time-dependent

amplitude,
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£~ i) (1.1)

(o]

o o~ o) (1.2)
Yk

where k = w/T is the wavenumber., The true wave structure in space is
distorted by fractional amounts of the order of the Mach number of the mean
flow, which, as shown by Culick (1971), need not be explicitly determined
within the approximations used. The problem comes down to finding the
amplitude n(t). Thus, the unstable wave is regarded as one having a fixed
shape in space, but the amplitude varies in time. For example, if one
examrines the fundamental mode of a T-burner, § = cos (z/L) and the mid-
plane of the chamber is always a nodal plane.

The argument in the earlier work led to the nonlinear equation for n,

A +wln+afn,f) = 0 (1.3)

where, partl:r by assumption and partly from the analysis
. 2 . e 12
» M) = ~2a n n n .
fn,n) = -2a + B Inl +8,n" +y In| +v,|nl (1.4)

Equation (1, 3) describes, as one would anticipate on physical grounds, a
nonlinear oscillator, .}nd it is often possible to attach a physical interpre-
tation to the coefficients q, B> By Yp» Ype

Approximate solutions to Equation (1.3) have been constructed both
by the method oi averaging, Krylov and Bogoliubov (1947), Bogoliubov and
Mitropolsky (1961), and by expansion in two time variables, Kevorkian (1966).
Although differing in certain details - for example, higher approximations
are more easily constructed by using two time variables - the results
obtained by the two methods are equivalent. In either case, the first
approximation has the form

n{t) = da(t) sin(wt + @ (t)) (1.5)
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The amplitude @(t) exhibits the correct gross behavior; during growth, d(t)
increases from an arbitrarily small value, progressing through a period of
linear behavior ( a ~ exp (at)), and ultimately leveling off at some limiting
value determined by the coefficients in f(n, 7).

However, the approach just described fails in what appears to be an
important respect. That is, even to second order in some small parameter
characterizing f, no even harmonics are generated. This is not only con-
trary to observations in solid propellant rockets, and expecially in T-burners,
but it cannot be correct if nonlinear effects associated with convection (i.e.,
those represented mainly by the term u - Vu ) are present.

It is therefore necessary to construct a new analysis. Because the
results based on the simple analysis just described do in fact exhibit some
important features of the behavior, it is reasonable to examine modifications
and extensions of that approach,

The basic idea here is to permit explicitly, from the beginning, the
presence of all possible standing waves. This really amounts to stating
that an arbitrary unsteady field can be synthesized of its Fourier components.

b
b3

Equations (1.1) and (l1.2) are replaced by the expansions

[0 0]
D 1) (1.6)
1i=0

- f ﬁl .

@ = e (1.7)
i=

The total pressure density and velocity fields are of course average plus

fluctuation fields

p =7 tep' 1.8)
p =P tep' (1.9)
4 = p+ e (1.10)

: The term i=0 in (1. 6) is simply n(t) v presenting a shift of the average pres-
sure. There 1s no correspondmg veloc1ty fluctuation, so a term i=0 dues not
appear in (1. Only in 510 will the influence of nj #0 be accounted for.
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where p is introduced as a dimensionless quantity measuring the magni-
tude of the near flow speed, and € is similarly a measure of the amplitude
of the oscillations. Both p and € are essentially parameters for bookkeep-
ing (see §2).

In § 2 the procedure for constructing the nonlinear wave equation
is outlined. Mainly the three-dimensional problem is discussed, but some
contributions arising from the corresponding one-dimensional analysis will
be incorporated. There are two features distinguishing this analysis from
previous works treating nonlinear motions in liquid propellant rockets:
sources of mass, momentum, and energy at the burning surfaces are inclu-
ded; and the mean flow field is non-uniform.*

The expansions (l1.6) and (1, 7) are introduced in the nonlinear wave
equation, and in §3 a set of equations for the time-dependent coefficients
nn(t). Each equation of this system represents the motion of a simple

forced oscillator, where the force Fn depends both linearly and nonlinearly

on all the urt

2 -
2 +‘-°n1'1 - Fn(ﬂl; ﬂz, -0--) (1-11)

If only the linear terms are retained, then one can extract from (1.11) all
known results for linear stability analysis. The nonlinear terms arise from
the gasdynamics in the chamber, the combustion, and other processes.

Only the contribution from the gasdynamics can presently he given simple
explicit forms, Owing to the manner in which the problem has been formu-
lated here, many of the nonlinear terms represent coupling between the
medes. It should be noted also that terms representing linear coupling arise

as well, both from the gasdynamics and from the combustion processes.

D

“The average pressure, density, and temperature are assumed to be uniform, a
realistic approximation to the situation in rocket motors. To treat certain types
of thrust augmentors, one must account for nonuniform average temperatures
and densities, which can be done within the framework developed in this report.
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In §4 an approximate means of solving the set (1.11) is discussed.
While it is true that if Fn is given, the coupled ecuations can be solved
numerically, this may be a relatively expensive procedure, The purpose
here is to provide a considerably faster and cheaper means of obtaining
the informe:ion desired. Here the technique used is essentially that termed
generically the '"method of averaging.'' It is based on the assumption --
almost always valid for the unstable motions encountered in practice-- that
the motions exhibit relatively slowly varying amplitude and phase. Thus,

the functions nn(t) are represented as

nn(t) = ﬂn(t)sin (wnt + CPn(‘t)) = An(t)sin unt + Bn(t)coswnt (1.12)

According to the basic assumption used, the quantities dn, @ An, Bn
suffer only small fractional changes during one period of the oscillation.
The analysis then produces coupled first order ordinary differential equa-
tions, a system which is cheaper to solve than the system of second order
equations.

The system oi first order aquations is valid for problems in whick
the frequencies of the higher mowes are not necessarily integral multiples
of the fundamental frequency. In §4 the general equations are given. As
an elementary example, the motions of two coupled pendula is analyzed in §5-
this shows the familiar beating of the oscillations, a feature which seems
not to have been accommodated by previous aprlications of the method of
averaging,

Many practical problems involve purely longitudinal (''organ pipe'’)
modes, for which the frequencies are integral multiples of the fundamental.
The system of nonlinear first order equations simplifies considerably for
this case, treated in §6. For applications, it is necessary to incorporate

representations of processes responsible for the loss and gain of energy
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by the waves. An approximation to the interactions between pressure waves
and surface combustion is descrited in §7. One way of handling the loss of
energy due to particles suspended in the gas is covered in §8; the results
show favorable comparison with more exact numerical calculations reported
elsewhere. In §9, linear and nonlinear viscous losses on an inert surface
are examired. Associated with the nonlinear unsteady motions there is also
a change in the average pressure; this is discussed in $10.

Several examples of unstable motions in motors and T-burners are
covered in 811. The cases have been chosen for comparison with numerical
results previously reported; again, the agreement appears to be quite good.

As noted above, the analysis has been strongly motivated by previous
work on the linear stability of motions. In §12 the connection is discussed.
One of the attractive {eatures of the formulation cf the nonlinear behavior
is that the more familiar linear results are not merely accommodated, but
explicitly incorporated and used. An interesting and important unsolved
problem concerns the influence of coefficients characterizing linear behavior
on the nonlinear behavior. The coefficients are proportional to the real and
imaginary parts of the complex wavenumber computed in the linear analysis,
Nonlinear behavior anpears to be quite sensitive to their values; a few ex-
amples are included in the brief discussion given in §12. 2,

Analysis based on expansion in normal modes with time-dependcut
coefficients have earlier been reported for unsteady motions in liquid pro-
pellant rocket motors [e.g. Zinn and Powell (1970), Lores and Zinn (1973)
and other works cited there]. Results were obtained for specific problems
by solving the second order equations for the amplitudes. Reduction to a
set of first order equations was not effected. Thus, the computational costs

must be substantially greater. Moreover, interpretation of the formal rep-
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sentation, and incorporation of processes such as particle damping and sur-
face heat losses appears to be somewhat more difficult than for the analysis
developed here. It is likely that the techniques discussed in the references
cited above and those discussed in this report should produce the same sec-

ond order equations for the same problem. This has not been verified.

II. CONSTRUCTION OF THE NONLINEAR WAVE EQUATION.

The nonlinear wave equation for the pressure is constructed by
suitably combining the conservation equations and the equation of state.
For applications to solid propellant rocket motors, it is necessary to
treat the medium in the chamber as a two-phase mixture of gas and parti-
cles. Culick (1974) has outlined the steps necessary to produce the equa-

tions for the velocity and pressure

-

au — - _ - —
P teu-Vu +Vp _6Fp- o] (2.1)
gP-+I{-Vp+7pv-E=E [@-u)-F +u-0 +(e_-e )w
t T, P P po o''p
(2.2)

+ (Q+(>Qp) +(1+ n)Cvap]

Here, p is the densitv of the mixture, p = pp + pg , and « is the ratio of the
mass of particulate 1iatter to the mass of gas in a unit volume of chamber:
"= pp/pg. It will be assumed throughout that # is a constant in both space
and time., With C the specific heat of the particulate material, the proper-

ties of the mixture are:

C, +C _ C_+nC _ C
S = T Cp® TT¥x U
v

(2.3)

P=Pg(1+n) a =7§T=-Y—';E-



The equation of state is

p = RpT = —&_ (2.4)

where R is the gas constant for the gas only, and R = Ep - Ev = R/(1 +n).
Note that ( ) is used in (2. 3) and (2.4) to denote certain material proper-
ties of the mixture. Later the same notation will be used to denote time
averages of variables.

The force of interaction and heat transfer between the gas and

particles is representied by

. 3a
F = - —L + 5,0 .7 ] (2.5
p [pp t © Pp'p " Yp )
de X - [aT -
Qp = -[pp-—}—at + Ppup . Vep] ) -PPC —‘Eat + up . VTP] (2.6)

The differences between the local values of velocity and temperature are

-—t b d

ba = u - 8T =T -T 2.7
p T YT PP (2.7)

Then the differential force and heat transfer are

asu
B o= - —P 2 -va -u-va
6Fp = p}:[ 5t + (u.p Vup u Vu)] (2.8)
[aaT . .
= - —P 3 « VT =u -V .
5Qp PPC 3t (up p~ ¥ T)] (2.9)

All symbols are defined in the list of the end of the report; additional details
leading to the forms quoted here may be found in Culick (1974).

The nonlinear wave equation is found from (2.1) and (2, 2) as

2 ¥ -0
a - ~ - 22 - -- . —.. - - —22 . - —i _’- __ ol \ ap
—-Ratz ypVv . YoV« (u-vu) [Y 5t vV ut 3 (u-vp)) - vpv +/+W (2.10)
where
_ E — -—o . - - . -t - —
P [‘“p U Fo 4T+ (ep e ) w, +(Q+5Q) +(l+n)Cvap] (2.11)

v

The corresponding results for purely one-dimensional problems [see Culick
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(1973, 1974) for further details of the formulation] is

2
9 Yp 8 [cd e du
at2 - s Tz-(_p_az) - YpSc 9z (Scuﬁ)
~9p 1 8 3 )
'[Y5t2§a—z'(“sc)+at (“52)]
(2.12)
15[ 8F -3,
- YP3 3z \%c P
(o]
ot Bt
with
_ 1 (p)
21 -—(u-up)wp+ Sc[ufmbdq+upfmb dq_] (2.13)
P =R—-[(u -u)F_ +ul + (e -e Jw_+(Q+5Q.)
1 ¢ p p 1 po o' 'p P
v (2.14)
+(1+ n)Cvap]
_ L Y R 2 2 2 2
S1 = SCI[(l+n)YR(T+ AT) + ZEV {ub-u +n(upb-up)]mbdq
_ (2.15)
1 R ., 2 2
— + H -
* SJ[CAT 2C. | pb 1) ] ppPugda
A'2

It has been assurned, to obtain the form shown for Sl,that AT, the difference
between the temperature of the rmaterial at the edge of the combustion zone
and the average value in the chamber, is the same for both gas and particles.
This is not an essential assumption, but is done here to simplify the formulas
somewhat, Note that except for extra terms in 21 and Sl' there is a one-
to-one correspondence between the terms of (2,10) and (2.12).

There are two ways of proceeding towards soluble problems, A
formal expansion procedure can be applied directly to the complete wave

equations, (2.10) and (2.11); or the first order equations (2.1) and (2. 2)
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can be expanded, and the wave equation formed. The results are identical,
but because the second calculation is somewhat simple~, it is given here.

Substitute the expansions (1.8) - (1.10) into (2.1) and retain only

terms to second order in € to find:

a;;! 1 _ - — — = -ol — .&l. 2‘:1:! -_1- -t -+
3 +$\7p' = -plu.va'+u'-va)] - efu'-vu'+ T Bt ] + GF(GFp"o') (2.16)
gtR' + Ypv- Q' = -p[T-vp +vp' V- a]- e['Tp'Vw-;' +u vp'] + %— P (2.17)

where F' is the fluctuation of P. To this point terms to all orders of u have
br:en rete.ined, and no assumption has been made about the ordering of G-f‘p',
o' and P'. Eventually only terms to first order in the mean flow speed will
be retained, so the mean pressure and density will be constant. For

simplicity, use that tact now and write* P= P, P= Py 2% - \é po/ Po

The nonlinear wave equation may be formed now by differentiating

(2.17) with respect to time, and substituting (2.16¢) into the second term

t'v' }

_’l _‘l Y a ] -.' l a -.| 1 _.'
-s{p°V°(u-Vu )-:-_—_Zsf(p V- u )-;E(u *Vp') +V'(Pg‘u{)

on the eft hand side. Some rearrangement gives

1

L

2
2, 1 97p' . { v a vyl 2.9
vp' - = ~Z .ppovﬁw+u.va) u Vet -

a

IR
Q)

B
=2
a

e

- _{ 1.32%'-52\7. 6 F '-6')} (2.18)
3~ P

The boundary cond’:ion accompanying (2,18) is found by taking the component
of (2.16) norrmal to the boundary:
hoopt . op BLa @ va' +u' Va) A - €(p U’ VI + '83')-5
P - Po Bt B Py Pe P Bt
| (2.19)
— ks 1 - t)e A
t < ((SI"‘p G')*n
The cne -dimensional counterparts of (2.17) and (2.18) are easily

deduceu by replacing v by 8/9z, and the divergence V.V of a vector v by

“Note that Po stands ‘or the average value of the density of the mixture:
= p_ (l4mu).
go

fo ~ ppo+pgo
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-1 - .
S, 8/8z(SCvz). Also, 0 is replaced by 21 and Pby P, +8,.
For computations of linear stability,only terms of order p appear on
the right hand sides cf both (2.18) and (2.19). The solution for the nth
mode then has the form (1.1), with n(t) a simple exponential,

at

0 ¢n(¥) (2. 20)

Thus, the first influence of the perturbation produces a growth or decay;
a is proportional to the average flow speed, characterized by p. There is
a small change of the frequency, but the spatial structure of the mode, b
is undistorted in first approximation. Calculations of-that-sort can be
extended: the next approximation provides a formula for a correct to
second order in the mean flow speed, and the first order distortion of the
mode shape.

The purpose here is to develop a description of nonlinear temporal
behavior associated with second order acoustics. The perturbations associ-
ated with combustion and mean flow are the same as those accounted for in
the treatment of linear stability. In order that only linear terms in p should
appear in (2.18) and {2.19), it is necessary that the undistorted mode
shapes should be used on the right hand sides. Formally, this step implies
that terms of order pz, ep and higher are neglected compared with those
of order p and €. This corresponds to the following limit process applied
to the small parameter g and ¢,

Consider, for example,only the two terms on the right hand side of
(2.18),

1 % pOV- (G° VE')} + €{p°V' (E' . VG')}
The acoustic velocity field with first order distortion is

:{l...a.l_'_al
= Uy TRy
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where Ga' is the classical acoustic field, Substitution gives
p.[{pov- @ - vﬁ’a')} + -&{pov- (Ga' . vﬁa' )}
p{pov~ @- vﬁl')} te {poV' (@ '-va, '+ 'Vt'ia')}

+pe { p V" (3" -vﬁ'l')}]
Now let , € = 0 but € /p~ 0 (1). Only the first terms survive, containing
the undistorted parts of the acoustic field, Similar reasoning applies to
the other terms on the right hand sides of (2.18) and (2.19). The procedure
can be extended to higher order in both 1 and €.
The expansions (1.6) and (1.7) are therefore appropriate. How
they are used to give a coupled set of equations for the amplitudes nn(t)

is described in the n-xt section.

III. ORDINARY NONLINEAR EQUATIONS FOR THE AMPLITUDES.

3.1 Construction of the Equations

Define the functions

h, =-pov-(ﬁ'-vﬁ" + G'-vﬁ)+§aﬁ‘- v%% +§2 '-5%:\7-\:1‘ (3.1)
h_=-p V- (@' -VG')+§2 Bit (p'v-u')+ ;1—2 a% (u'-vp') - v (p'%') (3.2)
h, = --15[;_1-2 Sy 2 (6F ) - & ) (3. 3)
£ =p, %Gt'-ﬁ (3. 4)
£, = p, (@ vu' +u' V) - A (3.5)
£ = (p,a'- Vi +p'%§-')'ﬁ (3. 6)
£, = -%(51'“'[)'-5')-6 (3.7)

Then the nonlinear wave equation (2, 18) and boundary condition (2,19 ) become*

“The ordering parameters are hereafter suppressed except in hV and fv.
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1 o%pt 2, h +h 8
3_2 2 - Vo' = -(hu+ Sy (3.8)
n.vp' = -f’s-f*&-fe-fv (3.9)

Multiply (3. 8) by the mode shape by for the nth mode and integrate over
the volume of the chamber. The first term on the left hand side can be
re-written using Green's theorem, and (3. 9) is then substituted. Some use

must be made of the following properties of the Y

Py +k Py =0 (3.10)
n 'Vq;n =0 (3.11)
2

j'\plq;ndv =6 . E (3.12)

K2 g 2,=2
n w, /3 (3.13)

These operations lead to
2B 4v + w 2[y p'av = -22[y [h +h, +h lav
J‘4’11 a2 d “u J‘q’np =-a Iq‘n TR

(3.14)

-2 ffu e e e og ) ds
Because of tl.e orthogonality (3.12) of the q;n, substitution of (1. 7)

in the left hand side >f (3.14) gives

poEnz[:ﬁn-f-mnznnJ = -—a.zj‘¢n[hﬂ+h€+ hv]dv
(3.15)
-2
- @“‘n[fsﬂp +£_ +£ 1ds
where
2 ¢, 2
E“ = [y “av (3.16)

For the one-dimensional formulation, the equation corresponding to (3,15)

is
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L
2r= 2 =2
PE “[n, tw,"n,] = -3 £¢L[hlp+hle th) 15 dz

(3.17)
L
-2
-a I:Sc“pz,(fls+ flp t fle + flw]°
where
2 _F o2
E)° = { Yy °S dz (3.18)
N 10 6 ® Gy 2% . Y das, 5,
Ip - P08 32"caz uu ;2 20t Sc 9t dz' ¢ :
_ 1 9 ou x_ 9 9 1 op' 1 ] ot
hle -pos—c Tz(Scu'_é_z)-f-;zS 3% (pla (Scu') +_2-5?(ul z)--—-azs-b—z—(scpl_BT)
c c
(3. 20)
JLfL 3 pasyl L B :
h, = - 6{32 5 (P'48)') - 5. % [bc(GFl;-Z, )]} (3.21)
_ ou'
fls = Py Bt (3.22)
£, = poaetuu’) 3
lp ™ Po az(““ (3.23)
_ ou' du'
fle: - pou' 3z T p' 3 (3. 24)
f = --I-(SF'-Z') (3. 25)
lw € P 1 *

3.2 Ewvaluating the Linear Terms

After sorne re-arrangement, one can establish the following identities:

, 2p=22 = -2
j'q,nhpdv + ﬁq,nfpds =pok J@ u')y dv - p,J (U xvXT]- vy _dV
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L L L N A LT
- 311! —
£¢thpscdz+[sc¢£f1p]o_ p°£ Tu ¢Lscdz+zzjo%[u .+ s, 51:— 4, @S, )18 dz

(3.27)
Ju b av+dfy £ as = 1f[__,_¢ e (6F' -5") - vy, 1AV (3. 28)
L L dy,
£¢thwdv+[sc%f1w]o j' [ 2% at (R +S])+6F, - ) g L1s 4z

(3. 29)

The terms in (3. 28) and (3.29) represent the influences of both surface and
residual combustion within the volume; the contributions associated with
condensed material suspended in the gas; and, for the one-dimensional
problem, the effects o” flow entering fiom the iateral boundary. Later(§ 3. 3)
the peculiarly one-dimezensional terms will be comtined in the three-dimensional
problem according to the prescription discussed by Culick (1975), To sim-

plify writing, define the functions H, H1 and Ll’ which appear in (3. 34) and (3. 35):

H = %[i_lz Wn%tg'+(6%p' -3y vy, ] (3. 30)
P! dv

H, = 1[_ v atl+(6F'-c') E] (3. 31)
3s ! ay
171 1 ey 03y

Ly = é‘[g‘z Vo 3 - (4] -9 4 (3. 32)

The acoustic quantities appearing in (3.26) and (3, 27) are approxi-

mated by the expansio.us (1.6) and (1. 7) to give *

2
[y By, dv +§\y £, ds z%‘!é ”1”[{%' v i".wi-\yﬁ.wn]dv

1

- Jf‘( Wi X Vx?—f)\yn- dv

+(7-1) [y ¥ veudv (3. 33)
1 o' =
r 2P oy, urhes

“As noted in connection with (L.6), no will be assumed to be zero throughout
except in §10.



L = k2 _dy _dy
r \J hlu dv + [Sc‘yﬁflﬂ:lo - —:_/'g-rrZ-l i {I [—%— ‘” m "V, d_zt:lscdz

Hy- I)I v "’zs d (S u)s dz}

v el g
The terms containing fs and fls are conveniently combined with the last

terms of (3.32) and (3. 33). Then with the preceding results, Equations

(3.15) and (3.17) become

© 2
0 X
2 . 2 _ . n = - = —'
ES[f_+winl = '}, ”1”[;2‘ Vp W VYT ¥ ue vy v
121 i

- J'(v “’i X fo_f)wn dv
+ (7-1)f\yiq/ v-i‘dv}

+570- G 2o, G, + > ub:|ds (3. 34)

' ‘l’
Eplf, +wf ury Z ﬁm{j[ 2 VU "Vma;yzijs‘lz

- 1 4 -
+ &0 [ vy 5 g5 505,92

(Continued)

The signs of [ ] aud the surface integral have been changed so

_" ~ 1 : A - sa .
u'sn=uy,'anduesn = u, are positive inward,

b
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(Continued from Page 16)

v ) . Py, *
+B%[:SC\IIL s (P ot =2 )Jo (3. 34)
L

L
‘{Jo \y!, hle Scdz + [ch’f,fle:]o}

~

+

LRI Cle

L ~ L
IHSdz+—LILSdz
17¢ P 1 ¢
[o] 0O O

3.3 Surface Terms in the Cne-~-Dimensional Problem; Combinin -

the One- and Three-Dimensional Problems

It is the function L1 which containsthe terms found in the one-dimensional

approximation, Only the lincar forms will be treated in this work., With the

definitions (2.13) and (2. 15), L1 to first order is

S' —\u(lﬂ&)atf(m +mbT )dq+w£(1+n)at_r I =
- [u'fExb dq + ui,J‘ r-ﬁép)dq]id\g (3. 35)

It is readily established, Equation (3, 11) of Culick (1974) that

(1+w) , , = AT’ Yy
+ - t '
po (mb mb To ) ub +p _Ez . (3. 36)

Then because the integral over dz dq is the integral over the lateral sur-

face, we can write

u

lfL 5. dz = lﬂ'“ < (o, ub+p——-—)dS

dy
z(lu) 8 T! — y(1+11) r L -
+ o rf T ¥y, 48 -2 Lu' 5 1y, dS
dy,
—l—ffsu 2 b(p)dS

The sign of u! in [ ] has been changed so that u
at the end surfaces.

b is positive inward
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it is a good approximation for most practical problems that the temperature
fluctuations within the chamber are nearly isentropic. * With this assumption,
and the approximation that the composition of thc material leaving the com-
pustion zone is the same as that within the chamber (so Py = (l+n);g), the

last identity can be written

- L - u
Y .Y 9 ' b
5 | Lydz = < ff v, 3 (P Up * P =5 )48
[o N o ] o a
-_— \ —
+(y-1)-§’;§1- ¥, T, ds (50 37)

_-ygu'—u ﬁ‘ 6u ﬂl—' (p)dS

The terms multiplied Ly (¥-1) in (3. 34) and (3. 37) combine to give

L
w
G-y A [y v, —Bs_dz (3. 38)
o)

m=1 pg

where use has been made of the continuity equation for one-dimensionai flow,

Substitution of (3. 37) and (3. 38) into (3. 34) then leads to

Eolf, +wy " zJ"z.ﬁ {.r[ sz :,n m“—"'JS dz

L
+ G0 \vmur_"’- s, dzf
(o] pg — L
— L by

(Continued)

This assumption which, at the expense of substantially more labor, ¢an
be relaxed, means tha* temperature or entropy waves (convected by the
average flow) are not -epresented in the volume of the chamber, Nonis~n-
tropic temperature fluctuations at the surface are accounted for (AT £ 0),
There is at present no evidence or calculation showing how important this
inconsistency might be., Essentially what is included is the direct influence
of nonisentropic surface combustion on the acoustic field, but interactions
between the entropy waves and the acoustic waves are ignored,
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[+ o] 0]
n dy_ dy dy
m [ £ - —(p)
- 2 2@ @ p IS5+ H&u 3z ™, 98
m=1l m
L
+ 2T a5 4z (3. 39)
po uo 1 ¢

Note that the surface integrals ir (3. 39) extend along the lateral
boundary only, and that the velocities ué, Eb appearing in those integr:ls
are positive inward. The second set of brackets containing surface terms
obviously correspond exactly to the surface integral in (3. 34). According
to the argument proposed by Culick (1974) these should be written in the
general case as*

73% g fupdy+ugsylds
where uy ! and u,' botii stand for the formula (3. 36).

Moreover, the surface terms contained in the last brackets of (3. 39) cin be

incorporated in the three-dimensional problems in the form
© 5 _
i (7 a 2 ﬁ o =.(P)
Zkzﬁ(vwi) (J\yn)én 1de+po Bub.V\ynmb 61 dS

i=1"4
Consequently, with proper interpretation, all probiems are represente . by
the equation
% —
Exzu[nn * wﬁnn] a Erf z Dniﬁi - B%§6;;)'an r.ﬁl(op) ds
i=1

y d
+E§‘IHdv+ﬁ 8 ry as

2| g }
- [y hdv+Qy f ds (3. 40)
(o]
* The symbols u', u'y. 6,6 are defined and discussed in §4 of Culick

(1975).
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where
kZ
2 _ rr_x_)_ = . =
En D ni - el kz \Vnro\,i \}'iu-V\Vn]dv
' (3.41)
+ -1 [y :P dv+——§(V\P) (V¥ )T, 6ydS
P
g 1
R = po (0'16_;_'?' Ll'n&u) (3. 42)

That the nonlinear .er:ns for the one- and three-dimensional problems corre-
spond exactly, and thecrefore can be accommodated as shown in (3. 40), is
demonstrated in the next section,

3.4 Nonlinear Terms

To the order considered here, there are no nonlinear terms explicitly
dependent on the mear flow. The representations will therefore be directly
useful for the classical problem of nonlinear waves in a resonant tube. No
special considerations are required for the one-dimensional problem. With -

the definitions (3. 2) and (3. 6),
x| N
I = b l./‘yn hedv ! g\yn fedS}
—_ au1
BL/ Yo [p u'. Vu' + p! ———-,dv (3.43)

; az f\ynl-y—é%(p'%u') + gta—(u'.Vp')]dv

o
It is within the approximations already introduced to use the zero order
acoustic approximations in these integrals:

9_‘—5.'_ ~ —_— ! QBL Y Toqg!
el »po vp 3t 'ypo u (3. 44)
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Then (3, 43) may be written as
1, = 7 /0oy @9a) - y_{F(@-a)%+3% 993} Jav

1

PoP

-

[lv v (p'vp') +‘lfn{(Vp')2 +7p‘VZp'}Jdv
[+

In the first term of the second integral, the approximation p' =~ a—zp' has

(3. 45)

*
been used; this is consistent with (3. 44). Now substitute the expansions

(1.6) and (1.7) to find, with the terms involving un dropped,

o [ o)
2 &
i=1 j=1
where
1 1
A..= JU9_ - (9¥.-9(Y.))
nij 7E: kifka n i i
—. 2,2 2
- \vn[y k, kj wivj - kj wi-wj]dv
2’ k2 y.v,}]av
Buj = " oT FEo 9 (99 + 4 L) (99)- 755 T4
n

Four integrals appear in these definitions:
Iiljn = [ vy (wi-V(wj)]dv
= vty vy)av
;ix = [y, 7 ¥ vy, dv

Inij =/ Wn q’i Wj dv

(3. 46)

(3. 47)

(3. 48)

(3.49)

(3.50)

(3.51)

(30 52)

*
More detailed consideration has been given by Chester (1961]) to the use
of acoustic approximations in the representation of finite amplitude wa-s es.
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Then (3.47) and (3, 48) are

-2.2.2 _ . ij ij 2.2
YEk/ kj Anij = I +k Io -7k kj 1nij (3.53)
-2
yE -
__n - i - JK2
—2 Bnij Lyt I, 'ykj I i (3.54)

One can eventually reduce (3.49)-(3.51) to multiples of Inij:

1J _ 1_ 4_ 2_ 2.2 _ _l_ 2.2 2_

Ln = 4[kj G -k) anij- 4kn(ki+ k )1 4(1< -k, )(k. +k L)
(3.55)

ij _ 1,222 1.2 1,,2 .2

= 3 (kj 4k )In;j =5 k| Inij + i(kj -k, )Inij (3.56)

SN § -

(= 3 (k + k kn )IniJ (3.57)

The secon . parts of (3.55) and (3. 56) show I ij and 1 2 decomposed intc pieces

ln

which are respectively symmetric and antisymmetric under interchange of

the indices (i, j). With these results, (3.53) and (3. 54) become

I..
.. = 21 [(k +k 2)2 -4'yk kZJ
mj 4yk2 kZE
(3.58)
s 27—2(1( K, )(k 2k ?)
Z'yk k., E
J n
(y-1)a I . (y-1)a 2 2
B .. = ——:_E“E-L(k tky )+-—-—————l(k k) (3.59)
J 2yE] ZyEn J

Again, the two parts on the right hand sides are respectively ~ym netric
and antisymmetric in (i, j)» In § 4, Equations (4. 32) and (4. 33), the following

combinations will arise:
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% S +k Pt 5
A. ww B = [ -2y k.k, 2(y-1)k. +k. ]
j j 27E2 2k1kJ LA b (r-1X i ])
_ (3. 60)
T S —k.2+k2-k2
n

It should be noted that there is yet no restriction to a particular
ceometry; the form of :he chamber influences the numerical results through
the values of the ki and the integral Inij' Because some terms in Ie , eq.
(3. 45), contain p', there are non-zero values fori = 0 or j = 0. These are
associated with the DC shift of mean pressure due to nonlinear processes;
this is treated separately in § 10.

Finally, because the nonlinear terms (3, 46) are summed over all
(i, j), and the coefficierts Anij' Bnij are multiplied by functions which are
symmetric in (i, j), only the terms containing the symmetric parts of Anij’
3 .. will survive. Thus, only the first brackets in (3. 60) will be required

nij

Jor later calculations.

1IVv. APPLICATION OF THE METHOD OF AVERAGING

Most of the terms on the right hand side are such that (3.40) may be

brought to the form

.. 2 _
fotw ' m = F (4.1)
vith
[>¢]
v .
F o= - (D A+E n]ZZ[A A A B nn, ) (4.2)
i=1 i=1j=1

Other contributions (for example proportional to |ni I, A Inj |, ees, etc,) may
arise; they are easily handled within the framework to be described now and

aecd not be considered explicitly.
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The set of coupled equations (4.1) can be solved numerically, but at
considerable expense. It is the intent here to reduce the second order
equations to first order equations, for which solutions may be calculated
quite cheaply. The basis for the approach taken is the fact that
many of the observed instabilities are essentially periodic with amplitudes
slowly changing in time. Each mode may th:: :fore be reasonably represented
by the form (1.12) with ﬂn(t), cpn(t), An(t) and Bn(t) slowly varying iunctions
of time., ..quations for the amplitudes and phases are found by averaging
(4.1) over an interval T which will be defined later.

Accounts of the method of averaging have been given by Krylov and
Bogoliubov (1947) and Bogoliubov and Mitropolsky (1961). The results are
restricted by the condition that Fn must be periodic. This is true for the
problems treated here if the modal frequencies are integral multiples of the
fundamental, a condition which is satisfied only by purely longitudinal modes.
Moreover, solutions are required here for a time interval longer than that
for which the more familiar results are valid., Both difficulties are overcome--
to some approximation not clarified or examined here--by the following
heuristic development,

Equation (4.1) represents the behavior of a forced oscillator, for

which the motion is

n ) = an(t)sin@nt + cpn(t)> = A sinwt +B_cosuwt (4.3)
and
a = [A:' + B:]% (4. 4a)
® = arctan [B_/A ] (4. 4b)
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The energy of the oscillator is

1 2.2 1 42
ébn = 79, " +-fﬁn (4.5)

Because the oscillator has instantaneous velocity 'ﬁn, the rate at which work

is done on the oscillator is ﬁn Fn' The values time-averaged over the interval

T at time t are

t4+7 t+r
@y - Ligw  arp-ifine  wo
t t

Conservation of energy for the averaged motion requires that the rate of
change of time-averaged energy of the oscillator equal the time-averaged

rate of work done:
L&Y = @ F) (4. 7)
dt n \nn n ¢

In all that follows the essential assumption is used that the fractional
changes of the amplitude and phase are small during the interval of averaging.
The changes in time T are approximately &n'r and qﬁn'r, so the assumption
is

c?n'r << . , cbnw <<2q (4. 8)

According to (4. 2), the velocity of the oscillator is

A = w d cos(w t+p )+ [cbndncos (@ t+9 ) +c7n sin(w t+ \yn)]

The inequalities (4, 8) imply that the terms in brackets are negligible com-
pared with the first term; the stronger condition is set [see Krylov and

Bogoliubov (1947), p. 10 ] that the combination vanishes exactly:

Cpndn cos (wnt + Cpn) + dnsin(wnt t Cpn) =0 (4. 9)
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Thus the velocity and energy are

n = wnan cos(wnt + cpn) (4. 10)
& = wnz an?‘ (4.11)

A second consequence of (4. 8) is that when the integrals in (4.6) are doae,
a n and ®  are taken to be constant--i. e. they do not vary significantly during

the interval of averaging. Equation (4,7) therefore becomes

t+T
Wy 1 _Tp cos(w_t'+p_)dt’ (4.12)
dt w T n n n *

t

An equation relating Cbn and an is found by substituting (4. 2), (4.9),

and (4.10) into (4.1). The time-averaged result ic

t+T
chn -1
- 3 ] |
T o7 an snx(wnt + tpn)dt (4.13)
n n,

Although c?n, ®, are approximately constant over one cycle, they may vary
subetantially over long periods of time. Equations (4.12) and (4.13) are
then awkward to use., The difficulty is avoided by solving (4. 3), (4. 4),
(4.12) and (4.13) for An and ﬁn' It is this pair of equations which will be

used as the basis for subsequent work:

dAn . t+T
—n . 1 1
T o f Fn cos wnt dt (4. 14)
oo
dBn . t+T
S UL I i ' gt
B = f F_sinw t'dt (4.15)
t

For Fn given by (4.2), the first order equations have the form
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dA aA dA
- - (g o2
t t linear t nonlinear
d
dBn ) ( Bn ) X (dBn
dt - dt . dt .
linear nonlinear

The linear contributions are:

(4. 16)

(4.17)

dA, =.ip A A___B fn{ :Pn [(f ;1o )A - (g +L L )B, \r
-/ =-2D A -z——B 'Z_’ -(g, il
linear
iZn
1
- 72;;5 {Eni [‘gni“’nimi'(fni‘hni’Ai]} (4. 18)
dB E ifn
n _ 2 1 _nn 1
dt L - "'Dnan+2 w An+2m 5 {wiDniufni'hni)Bngni'Lni)Ai]}
inear n n
ign
1
+ z,,';é {Eni[(gni‘*'ni’Bi“fni‘hni’Ai7} (4.19)
where
T
sin(w.+w )=
£, = 1 02 osl(w+w )t+5)] (4. 20)
ni T i n 2
(wi+wn)§
. T
SIH(wi+wn)f
g = 7 sin[(w, +w )(t+ )] (4.21)
(wi+wn) z
. T
sin(w, -w_) 5
h. = 1 02 cosl(w.-w )t+D)] (4, 22)
ni (w'_w )1 i n 2
T
sm(w -~ )5
L = 22 ginl(w,-w )t+3)] (4.23)
(. -w ) ~ i ’n
i"%n’ 2
The nonlinear contributions are
dA ©
n _ 1 [ nij mJ.]
— 2 - m— C a,. T, C T
(dt nonlineax 2w, & Z { nij 14 32
i=1l i=1
+D_..|b.. T‘“’ +d,. T“‘J]} (4. 24)
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dB 0 o0
—_n - _.1___ nij nij
(dt) . = 3w Z Z{ij 255 T2y =~ S5 T4+]
nonlinear =1 j=1
+D s [b Tm3+d T“‘J]} (4. 25)
where
lr
.. sin(w_+w,) 5
Tﬁj = n iTZ cos [(w +w )(t+1)]
n = 2
(wn+wi)2—
sin(w -w )-T- (4.26)
+ n 22 sl -w )(t+:r-)]
oL n 4T 2
(wn wi)2
T
.. sinfw +w )z
Tf,_’jg = a f_?‘ sin{ (w +wi)(t+%-)]
n
(wn+wi)2—
(4. 27)
sin(w -wi)% T
- == sin[(w_-w )t +5)]
(wn""’i)?
sin{w +w )1
T?i: n *f sinl(w_+w )t +3)]
n = 2
(4. 28)
sin(w -w )1
* .
] B 22 sinl(w_-w, )t +5)]
(wn-wi)i
sin(w_+w )I-
Ty = ——-——‘-‘—-—,—?—5 cos{(w +w )t +=)]
h o+ 2
(%ﬁwQE 4. 29)
sin{w_-w )1 .
; 222 cosl(w_-w, )t +3)]
(wn-wi)z-
w, = @ +!.¢:j
} (4. 30)
W = W, W
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1
> (AiAj - BiBj)

o
]

1
ij = 2 (A BB

1
5 (AiBj + AjBi

(4. 31)a, b, c,d

C.. =

ij

d.. = ‘l—(A.B - A.B.)

ij 2 i7) !

C..=A . ww, -B_.. (4. 32)
mj mj 1) nj

D «e = .. W.W. +B .o (4.33)
mj nij 1) mj

The coefficients Cnij and Dnij are calculated with Equation (3.60); as noted
at the end of § 3, only the symmetric parts are required.

These formulas are valid for any geometry; the modal frequencics
may have any values., Considerable simplification may accompany special
-ases, Most of the following discussion will be concerned with problems
nvolving purely longitudinal modes, for which W = nw;.

The interval of averaging remains unspecifi»d, Two possible ties
ire fairly obvious: T =T,, the period of the fundamental oscillation; and
T = Tn’ the period of the nth mode, In the first case, each equation is
averaged over the same interval, while if T = 'rn, each equation is averaged
sver its own period, Partly because the argument leading to (4. 14) and
(4. 15) is not rigorous, there is no wholly satisfying reason for choosing
une or the other alternative. If the same interval, T = 'rl, is used for all
zquations, then it is necessary, for (4.8) to be satisfied, that the amplitude
and phase of the nth oscillation not change much in roughly n of its own

periods. This same condition must be met if T = T in each of the n equations,
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For in the equationn = 1, dn and 9, can be taken outside the integral only if
they are nearly constant over the interval Ty =nTo.

In all the problems considered here, the motions are in fact domi-
nated by the fundamental mode: the time scale of the slow changes is
asually longer than Ty and is essentially the same for all modes. Hence,
the choice T = 'l’l is appealing and will be used here. It happens also that

in some cases the equations are somewhat simpler. Comparison of numer-

ical results for the two possibilities has not been made.

V. AN EXAMPLE OF AMPLITUDE MODULATION

It appears that applications of the method of averaging, and the
procedure based on expansion in two time variables as well, have been
restricted to problems for which the function Fn’ Equation (4.1), is periodic.
This is true, for example, if the modal frequencies w_ are integral multiples
of the fundamental, W, =nw,. Because the specific examples discussed
later are, for simplicity, also based on the condition that W, =nw, it is
useful to examine a simple case in which the frequencies are not so related.
This may serve not to prove but to suggest the validity of Equations (4. 14)
and (4.15). The practical importance of this conclusion is considerable,
for one is then in a position to treat nonlinear problems involving tangential
and mixed tangential/axial modes which are commonly unstable in certain
kinds of combustion chambers.

Consider the simple problem of two oscillators linearly coupled and

described by the equations

» 2
fi, +wyn, = Kn, (5.2)
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Equations (4. 18) and (4. 19) reduce to

dA.

?t—l-=-i-—[(g +1.)A+(f +h)B] (5. 3)
dB.

. K [ - 4B, - (5. -
T T T L h)By G BygA] -4

Here, ifi = 1, then j = 2 and ccnversely, giving four equations, For the case

when the two oscillators have nearly the same frequency, w,+w, ~2w

1 1’
wl-wz ~ 0, so hij -1 and fi, g; zij - 0, Itis then a simple matter to show

that the Ai' Bi all satisfy the same equation,
2

£ ) -

(5.5)

The coefficients all oscillate at the '"beat frequency,'' approximately equal
to K/2 Wy
For example, if the initial condition is m = 0, n, # 0, then a solution

is

C

uh 1 sin( -%,1- t) sin w,t (5.6)

K
C2 cos(-z-c—u—t) cos w, t (5. 7)

n
2 ]

Vi. LONGITUDINAL MODES: w =nw,

This special case will serve as the basis for many of the examples
discussed later. The integrands in (4. 14) and (4. 15) are now periodic, with
period Ty the limits on the integrals can therefore be changed from (t, t+7)

to (0, v). In accord with the remarks at the end of §4, 7= Then (4. 14)

1"
and (4. 15) become
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da_ \ ZTr/w1

<+ < i j‘ F (t)cosw tdt (6.1)
dB_ 2"/“’1

¥ - 21m j' F (t)smw tdt (6.2)

The linear coupling terms (4. 20) - (4. 23) all vanish when w, = nw, , and the

only non-zero values of (4. 26) - (4.29) are

e . nij _
1+ 6n, itj Tl- 6n, i-j * 6n, j-i (6.3)
nij nij
T = . = -
4+ o, 4] Ty o, i-j o, itj (6.4)
The equations (4.16) and (4,17) are now
A E ., 2
_2-.lp 5 .1l o 22[ a5
dt 2 "an"n 2 W, n nij ij n, i+j
=1 =1 (6.5)
* D bnij(6n,i—j+6n,i+j)]
dB ) &
__n__1 1 mm, __1_ Z 2
F " ZPmBatza. A 7Tw [Cn.ij €35 On, 14j
n n, .
izl j=1
(6.6)
" Dpgy %5n1eg  Snson)]
With the mode shape ¥ _ = cosk_z, the integral I .. is
n n nij
I.. = ¥(6 + 6 +6 ) (6.7 )
nij =~ t '“'n,i4j n,i-j n, j-i *
and the formula (3, 60) gives eventually
- . 2 wl - w?
C nij . (o wit =W e
(6.8)

+ $ (2w -F-Dwgte)?] + -V -0 )6, ;46 0 )
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- —1 2- = 14 . 2 -— 2 2.4,
0 = - — {[2w’-(¥ 1)(wj w)"] + (3-'y)(auj -y )}on’ 145

nij 4y
v+l 2 2 2 (6.7)
Y+l -
+ e loog + (0w - w06, 5 0 +6,55)
Let
I .
an - = 2 Dm en = zwn Enn (6-10)

and after some arithmetic, Equations (6.5) and (6. 6) can be put in the forin:

1A B ®
& anAn + ean +-2_ Z liA'i(An-i-Ai-n-Anﬁ) - Bi(Bn-i+Bi-n+Bn-i)]
i=1
+EE— i{—!—A [(n2 -mZ)A ( 2—a.)z)A -(w2 -wz)A ]
2 wZ 3 L‘n-i 1 n-i_ m1-n i " i-n nH i n+i
i=l "n
(6.11)
1 2 2 2 2 2 2. 9
o2 B [lw - )B s+, D -w B, e p-w )3 ]
n
X
0. . _n . . 1
g = Bt ALt L [A(B 4B, -B )+B(A _-A +A )]
i=1
[+ o]
+E§2{-1—A[(w2 2B +Hw.l -wl)B, _-w?l -wl)B_.]
3 2 Ay B ey -0 0By Wy W By
i=l "n (6. 12)
1 2 2 22 2 }
i Bilw, ;-w A j-(w7 @A+ -w5)A ]
n
where _
p = XL (6.13)

8y
The first series in (6.11)and (6.12) arise from the symmetric parts

of C .. and Dni" One can verify directiy, in accord with the remark fol-
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lowing (3. 6C) that, because terms cancel one another by pairs, the second
series in (6.10)and (6. 11) vanish. Consequently, the equations to be solved

for problems involving purely longitudinal modes are

w
dA
3 o .
—clt_'n = anAn * 9an + Lf' z (Ai(ArrL-i‘Ai—n.Arx«i-i)”Esi‘Bn—i"‘Bi—n"LBn+i):l (6.14)
i=1

dB_ Bn o

— - - - A )
dat aan enAn = 2 [Ai(Bn—i+Bi-n Bn+i)+Bi(An-i A'i--n."An-l-i)] (6.15;

i=1
Some numerical examples are given in Section 10 and 11. For most cases
considered, five modes will be treated. The explicit equations, obtained

from (6. 14) and (6. 15}, are

dA
| S
~. = alA1+61B1-ﬁ(AlA2+AzA3+A3A4+A4A5)-ﬁ(Ble+BzB3+B3B4+B4B5)
(6. 16a)
dB, 8
- alBl-91A1+i[(BIAZ-AlBZ)+(BZA3-AZB3)+(B3A4-B4A3)
+(B,A.-B.A,)] (6. 16b)
44, A,+6. B +BAC . 28(A A +A A +A.A_)-BBZ.28(B.B.+B.B +B.B.)
dr. T BT bPA - 18378284 1A3A5)-BB) -28(B | B;+B,B +B. B,
(6.17a)
dB, .
- - QZBZ-BZA2+23_BIA1+(B1A3-B3A1)+(B2A4-B4A2)+(B3A5-B5Azﬂ
(6. 17b)
dA

¥ - 0.3A3+63B3+3L3AIA2-3ﬁ(A1A4+A2A5)-3[5(B1BZ+BIB4+BZB5) (6. 18a)

- ° a3B3-93A3+3{3\B1A2+B1A4+B2A1+BzA5)-3ﬁ(A1B4+AZBS) (6. 18b)
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dA
4 _ 1 2 1 2
o i 0.4A4+64B4+4ﬁ(3A2 +A1A2-A1A5)-4{3(2BZ +B1B3+B1B5) (6.19a)
dB4
= - a4B4-64A4+4B(A1B3+AZBZ+A3B1+A5Bl)-4B(AlBS) (6. 19b)
dA5
5 ° a5A5+95B5+513(A1A4+A2A3)—5ﬁ(BlB4+B2B3 (6.20a)
dB5
¥ - aSBS-65A5+5(3(A1B5+BIA4+AZB3+B3AZ) (6.20b)

VII. AN APPROXIMATION TO THE INFLUENCE OF

TR#NSIENT SURFACE COMBUS TION

Only the simpl:st representation of the infl:ence of unsteady com-
bustion processes will be covered here. Elementary results for the linear
response to harmenic pressure variations form the basis. Certain of the
features of truly transient behavior will be ignored in the interest of obtaining
formulas which are clear and inexpensive to use.

The influence f surface combustion is contained in 8 , defined by
Zquation (3. 42). It fallows from (3. 40) that the corresponding contribution

to the force Fn in (4. 1) is
(cy  y KA
F ¢ - pJE_Z = PRy as . (7. 1)
o n

To simplify the discussion, consider only one of tle pieces of R; e.g., let
6, =1, 6y =0, so (3.42)is

AT’ ) (7.2)

Ro= pou, iy Fpoo (loo(my + my T,
a'O
It is best here also to avoid the complications associated with a condensed
phase: set n = 0, so the following results apply to propellants not containing

metal.
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There exists a class of analysis, discu_sed by Culick (1968), which
produces a formula for xfxb/l?xb ,» the fluctuation of mass flux due to a sinu-
soidal variation of pressure. This is a linear result, rﬁb/fﬁb being propor-

tional to the pressure fluctuation:

‘b p (r), . (i)y P
= = iR "] . .
— R'b P, [Rb Ry P, _(7 3)

My

The response function, R.b » is a complex function of frequency,

nAB

= R (7. 4)
' A+3 _(1+A) + AB

A

in which A is proport.onal to the activation energy for the surface reaction,
and B depends on botlk A and the heat released by the surface reaction. Out
of the same analyses, one can extract the formula for Af/"!‘o [see also Krier,

et al. (1968)] :

R T -

af _[_s C 4B l]2

?r— - T C E ‘Rb‘n) ind Y p . (7' 5)
o o p o

Consequently, if these results are used, (7.2) becomes, for sinusoidal motions,

T T -
5 = s C AB sCABx-l]E
R o= "o“b[(”'r—t ERy - E Y ) P
o p o p o
= relr) , . o) P
= pu R +if"] (7. 6)
ob P,
Note that R(r) and R(i) are dimensionless functions of the frequency and the

(r)

other parameters; if nonisentropic temperature fluctuations are ignored, Ri =
(r) i) o (1)
Rb (wi) and Ri = Rb (wi) .
Now the formula (7. 6) is, by construction, for steady sinusoidal vari-
ations only. The approximation suggested here is a means of using the formula
under conditions when the amplitude and phase of the oscillations are varying

in time. This is done by noting that for sinusoidal motions, i is equal to
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vl 9/8t . The replacement is made in (7. 6), and assumed to apply to all

modes. Thus, fi/po stands for ”i*i » and for an arbitrary pressure field ex-

pandad in the form (1. 6), R in (7.1) will hereafter be taken as

an .
- (r) . 1 () 9
R = "o“b)i::1 [“i tu at]"’i*i : (7.7)

The subscript ( )i on Ri(r) and Ri(l) means that each function is evaluated at

the frequency of the ith mode; these quantities can be calculated from (7. 6) and

(7. 4).

The force (7. 1) is now

() Y% 2 __(r). (i)
fn T LT izzlmi PimwR i 1 ¥ wes (7. 8)
n

The further approximation, ﬁi - izni , has been made in (7. 8); this is con-

sistent with approximations already made in deriving the equations (4. 1).

Finally, the rule (6. 8) gives directly the contributio~s fron. surface

combustion to an(c) and Gn(c) to be used in (6. 12) and (6. 13):
€@ Y% (r)
o= =2 By vds (7.9)
2E
n
(i)
R.
AL S (7. 10}
n ..t m

i
The same procedure ¢ an be applied to propellants containing metal; only

some details are chan.ed to account for » # 0.

A similar approximation can be used for handling combustion within
the volurae of a chamber as one finds in liquid rockets, thrust augmentors,
and rolid rockets exhibiting residual combustion. Although other contribu-
tions will in general arise, associated with mass and momentum exchange,

the direct contribution of energy release is represented by the terms con-
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taining Q and wp in eq. (2.2). The perturbations are part of P', (2.11),
which appears ultimately in H, Hl’ and Ll’ eqs. (3.30) - (3.32). Those
functions are on the right hand sides of the oscillator equations (3.39) and
(3.41). The dynamical behavior of combustion within the volume may, for
example, be represented by some sort of response function; the well-
known n-T model developed by Crocco and co-workers is a special form.
In any case, the contributions to the individual harmonics can be approxi-
mated as surface combustion was handled above. No results for bulk com-

bustion have been obtained.
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VIII. AN APPROXIMATION TO THE LINEAR AND NONLINEAR

AL.TENUATION CF WAVES BY GAS/PARTICLE INTERACTIONS

Part icularly ir solid propellant rockets using metallized propellants,
but in other systems as well, some of the combustion products appear in
the form of liquid or solid particles. The viscous interacting between the
particles and the gas may, under suitable conditions, provide a significant
dissipation of energy. It is often the case that the Reynolds number based
on the particle diameter is outside the range in which Stokes' law is valid;
it is necessary to use a more realistic representation of the drag force.
This introduces another nonlinear influence in the general problem.

Let F (p)
n

dencte that part of Fnin eq. (4.1), representing the influ-
ences of inert particles. The terms involved are those containing 61}} and
6Q£’ , the fluctuations of (2. 8) and (2.9). By tracing the development from
(2.10) ancd (2.11) to (2. 18) and (2.19), to (3.8) and (3. 9), to (3.40), with H

defined by (3. 30), one finds that the terms in question are
(p) — Y l __1_ _B'-_ _2 U -.I . = _.I . ]
F P - p—lE—[L [_a_z = & (6Qp+6up Fp)¢n+6Fp vy [dV . (8.1)
o n v

The differential heat transfer and force acting, per unit volume, between

the condensed phase and the gas are defined by (2. 8) and (2. 9); explicit formu-
las can be found only 5y solving the equations of motion (2. 5) and (2. 6) with
the force Ep and heat transfer QP specified. Numerical calculations

[Levine and Culick (1972, 1974)] have shown that for many practical cases,
nonlinear interactions are likely to be important. The approximate analysis

here will be based on the nonlinear laws used in those works:

] (8.2)
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12C
- .33 .55,
Q = p ——% (T -T)[1+ .23Pr’ " "Re 1 (8.3)
p P PrpsU P

where
Pl -
Re = 22 |u _u] . (8.4)
W p

Hereafter, the real flow will be treated only in a local approximation
so that the particle motions may be treated as one-dimensional; interactions
between particles are assumed to be negligible. For a single particle, with
spatial variations of the motion ignored, the equations to be solved for u'

and T' are
P

du’
_ 1 _ 13 . 1 o 2/3
t = - = Fp = - —Ez-(up-u )[1 + gRe :] (8.5)
p p.C
P S
dT' 12C
_ 1 _ p - P33 .55]
cq2--La - -__Z(TP-T)[H.z,pr Re (8.6)
Po Prp 0

To evaluate 8§F' and 5Q', the quantities §u' = u' -u' and §T' = T'_-T' are
p p % p P p
required; by subtracting du'/dt from (8.5), and dT'/dt from (8. 6), one

finds the equations

dbu' 1 du’ 6% 2/3
—_ T~ - !
ae o duy i - K = laupl (8.7)
d d
doT!’ ) dT ST .55
—F +;t—5Tp = - - K, J"’t lbupl (8. 8)
V-’ith p ”2
S
= S (
"d 184 '8.9)
3 C
‘Tt Sl o Per (8.10)
p
o.2/3

1 Pgo
K_Z;—L-u) (8.11)
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g .55

P
K. = .459Pr 33(_3:_) (8.12)

2

Comparison of (8. 7) and (8. 8) with (2. 8) and (2. 9) (again with spatial varia-

tions ignored) gives the formulas

dou' /3
d&T! 6T’ .55
- -1 .., 4T
Q) = -ppC += - ppC[‘rt 6Tp+ = +szpc —Pt lau | (8. 14)

As an approximation, the nonlinear terms in (8. 13) and (8. 14) will be evalu-

ated by using the line.r solutions for 6u!') and GT;. With Kl = Kz =0, the

linear solutions to (8. 7) and (8. 8), satisfying the initial condit.ons 6u;) = 6“;30

5T = 6T' att=t , are
P po o

-t/T,t t'/T -(t-t )/
(o]

t = l d d 1] 1 L] t ' H d
6up = -i_;e Er e u'(t')dt'-a (t)] -|.6upo-u (to)]e (8. 15)
o
-t/t,t t/T -(t-t )/
[ 1 d t Vgt ' 1 ' f o t
6Tp = ’_te tj e T'(t')dt'-T (t)]-[pro-'I (to)]e (8.16)
o

The second parts, arising from the initial conditions, represent short
term transients which are negligible for t-tO >> T4 If these are retained,
they will introduce in the oscillator equations (4. 1) terms which depend
explicitly on the history of the motions. In the interests of simplifying the
analysis, these term: will be ignored. This is an approximation which is
accurate only if the p~riods of the oscillations (all harmonics) are long
compared with T4 For the nth acoustic mode, the velocity and temperature

fluctuations are

(8.17)
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where us is given by (1. 12). Substitution into (8. 15) and (8. 16) gives
day

. . 1 n
buy = Xyny - T =7 Tz (8.18)
vk
n
x f -
. 2 n -1
6Tp = - (wn‘ftﬂn + a—') — T, v, (8.19)
n n y

The functions A and B are taken to be constant in this part of the calcu-
lation because the results will eventually be used in the right hand sides of
(4. 14) and (4. 15); because the short term transienrts have been ignored, the
lower limit on the int.grals is t, = 0. Explicit dependence on frequency is

contained in Xl and Xz-

_ - 2
X, = (wnﬂd)/(HQd) (8.20)
2
X, = (wnﬂt)/(HQt ) (8.21)
where
Q3 = "7 and 0t= woT, - {8.22)

Substitution of (8. 18) and (8. 19) into (8. 13; and (8. 14) gives for the

linear parts only,

pw X
- Gl
(6Q£)) = —P—— CT, - 1)[-— ul (;(E:‘,- -wn)—%ﬁn]*n (8.24)
lin Y t W

These locally one-din.ensional results can be used in (8. 1) with dwn/dz re-

placed by Vlbn to give

2 2
Q
(p) . t |
TF P = - X ”C—X ] Wy m[‘—z"*(Y 1’—C ol
p d

(8.25)
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Again by applying the rule (6. 8), one finds for the linear contributions from

gas/particle interactions:

‘P)_ ‘2“1+u’[x + - 1)—x] (8.26)
2 “p 2
0 o,
(P) _wn %" d
) S WL + § 1)_ (8.27)
n 2" I+ [1+ndz g, 1+nZJ

Recent numerical results reported by Levine and Culick (1974) have shown
that the result (8. 24) 1s quite ~ood for smaller particles, and if the frequency
is not too high. Beyond limits which are presently not well-defined, the
Reynolds number (8. 4) becomes too large for the linear drag and heat trans-
fer laws to be accurate. Further comments on the accuracy and some ex-
amples are given below.

The problem of analyzing nonlinear particle motions is avoided here.
A correct treatment -sould involve solving (8. 7) and (8. 8), the results then
being used in (8.13) end (8. 14). A very much sin.pler course is taken here;

the linear solutions are used everywhere for éub and 6T£). The nonlinear

part of the force F (p)
Yp R/C CK K
. (p) K|~ 27,1 1
re "] = —1 *T T+_T]} (8.28)
D oonlin JL Ta 2! g3 Ty 4
where the integrals ave:
~ -t 2/3 -
I - ) ‘6h£>| 6u£)' w_dv (8.29)
~ a ' -.l . 55
[ 3 e lou 177 )y av (8. 30)
~ o - 2
I, = [ 6wy av (8.31)
2/3
~ ) -, 2 -,
I, = I ((6up) Iaup! )wndv (8.32)
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To evaluate these integrals, it is easier to re-write the formulas (8. 18)

and (8. 19) for three-dimensional :.0tions as

X 1 1
- (™ 22 2 _2¢2 . d
Gui) = \?>(l+nd’ (A"+B ) sm(wnt+¢n)an (8. 33)
n
- X 1 1
. y-1 —2 22¢ 2 22 t
5T} = -(—---\7 )Tokwn)(lmt) (A“+B%) cos(u_t+o )y_ (8. 34)
where
(Bn-ﬂdAn) 3 (An+QdB)
sin¢_ = cOS @ =
n 21 2 2.1 ° n 2T .2 - 2. '
(1+Qd )2 (An+Bn 2 (1+Qd )a(An +B_ )z
(8.35)
¢ (Bn-OtA ) ¢ (An+QtBr)
sind¢ = , cosd = :
n L.z 2 2.1 n 2172 2.1
(1+Qt )Z(An +Bn )2 (I+Qt )-’-(An +Bn )z
The formulas (8.29) - (8. 32) become
1+gl . 1+§1 l+§l §1
~ 2772 2 22 . d.y.. d
I = Ik (1+Q,) <;,"T) (A +B) sm(mnt+¢n)!51n(wnt+¢n)l (8.36)
n
g 1+£
- ST TN 7-1 X2 27
T, = L") 1+0y]) (=L) (-_—To)(-—)(A +B )
- ykn v n ¢
d oy d, 2
I {-Cos(wnt+¢n)‘sln(u\nt+¢on )l (8.37)
1
2 2 2
(1+Q
~ d 1 2.d . 2 d
I 3 = 13[ :] (A +B )E { sin (wnt+¢>n )} (8. 38)
2+$ 2+¢
~ (“Q)z b 2_2ld(.2 d, . dgz
I = 4[ ‘ (An+Bn) T \sin (wnt+rn)lsm(mnt+¢n)‘ } (8.39)
where gl = 2/3, gz = 55 and the integrals involving the mode shapes are
1 2 £
i P )f oy 1lay (8. 40)
n
1 or, 20, (02
L, = T{I”n lve | “av (8.41)

n
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1 2
I, = Fjwn(vwn) v (8. 42)
n
1 2 §2
1, = T{?_‘Hn(”’n’ |V‘Vn| av (8.43)

n

For comparisca with numerical results, these integrals will be evalu-
ated for longitudinal modes in a uniform chamber. Then dV = Scdz and
Y, = cos k 2 with k nt/L and 0 £z £ L. By making use of the periodicity

of wn , and with 8 = knz , one c.n show that the values are

3+§, 2
1
205 m/2 2+t nsS_ 2+, [T(—=)] nS
- C . *1 _ Cc 1 2 c
Il = k I sin ede = —k—— 2 W - . 698(—1‘(—') (8. 44)
n 0 n 1 n
1+§
2
2nS mw/2 ¢ nS r T nS
L =——] cos’8sin 28d8 = (7) ( = .644(——9-) (8.45)
k k k
n O n 1"( 2
Loooe [ cos8sin8d8 = 0 (8. 46)
3 k .
n 0
s_ p 24,
14 = -g J(; cos Blsm 8! dé = 0 (8. 47)

To simplify writing, assume only here that T =T which is very closely true

in many practical cases, so ¢f_- ¢;= d)n, and define the functions

g
¢ (6) = sin(o t+o)|sintu t+o )] ! (8. 48)

3
xn(t) T.')l—?igt{.'Cos(‘”n”‘bn”Sin(‘”n”“’n)\ 2} (8. 49)

n

It

With all the preceding brought together, the nonlinear part of the

force (8. 1) is
1+¢,
rrlPl cu i {w e (aZBE) 7w ¢ )

1 . n l+x n n
nonlin 1+§2

L
wual) a2 T w x o) (8. 50)

[
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where §1 _ g
2> aX 1) X
W, =—( 698)1+Q) " K 1<:——/ <T'O‘> ) (8.51)
Yo nd
2 > Ef‘- c Exl §2 X,
W, = F(.644)(1+Qd )¢ §-1)— K2<_ - ) . (8.52)
Cp Y, 't

The time-averaging of (8. 49) according to (4. 14) and (4. 15), with

= 7, (see the remarks at the end of §{ 4) requires the integrals

Zﬂ/wl coswnt 2

1 ‘ } 1 n { cos$ \
I5 - wn"rl J‘O wngnﬁ' -sinwnt dt = 2T j(; Cn --sine,rde
| 2w/w1 4 coswnt \ | 2r { cosh
= = 5 e
16 T IO UnXy' -sinmntJ dt 27 % Xn _sina} d

where 6 = wnt. With Cn and X, given by (8. 48) and (8. 49), the integrals are

—t
1

2% 3
2—11r—£ {(_:szsnes ::in(6+¢n)| sin(9+¢n)l 1dB

—
it

6 = 7w T{ “oie ) 78 {°°5‘9+¢n"5m‘9+¢n”§2}de

Because the ‘tegrands have period 2w, the limits on the integrals have been
changed from (0, 2mn) to (0, 27); the integrals are then multiplied by n, giving
the factor n/run'rl = (}.ﬂ')'1 . Now let | = &4 ¢n: the limits become (¢, 27+d)
which, again because of periodicity, can be changed to (0,27). Moreover,

it is easy to show that the integrals over (m, 27) are equal to those over (0, 7),
so one has

rcos*L'cos<br+sin\l'sind> \ 1+t§1
\ ) J sin 'L' d'l’

[
(S 2]
Q| —

Oe— 9

3 .
©.sinvccsd +costUsing
n n
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cosyc.s8d +sinysin
Yc.s¢ +sinysing_

) T . 1+§
e = -7 j(;{ -sinwcos¢n+cos¢sin¢n}{(HgZ)Sln

|
Zw'gzsin 2 lll}d‘b

All integrals containing cosy vanish, and those containing siny can be re-

duced further to the interval (0, w/2), giv'ng the results

> sin¢ n/2 ’ 2+§1
g = { -cosr:bn} .y sin vay
0
2 sind)n m/2 . 2+g2 T,J/Z . gz
16 = F{-cosdbn}l:(lﬁ’z)‘ro sin vdy - EZ ) sin ﬂjdw:l

For gl = 2/3, the integial in I_ has the value 0. 698 as in (8. 44), and for

5

g?_ = 0. 55, the integrals in I, are

6

m/2  2+E, m/2 £,
sin “vdy = 0.713 [ sin®ya¢ = 1.175
0 0

Finally, then, the integrals are

sind
_1.396 n )\
I5 - T -cos¢.nJ’ \8.53)

.918 {Sin¢n

6 T -CO0Ss ¢>n

—
1l

(3.54)

After sind>n and CCS¢>n are replaced by their definitions (8. 35), one

finds for the contributions to An and Bn , from nonlinear gas/particle

interactions:
dA
L m(—L>{V (B_-Q,A )+V_(B_.0.A_)" (8.55)
dt n\ 14y nl' ' n "d 'n n2'"n el o
dB
n _ » f \1 .
where
333
1.396 2 2 .
an - Wnl(An+}3n) , B.573a)
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-918 2 2.275

W (A °+B°) } (8. 57b)

VvV =
n2 ™ n2' ' n

Note that in (R.55) and (8. 56), Qd appears explicitly in two places, and Qt in
two places. Actually, what arises is (= LT where, because of the assump-
tion preceding (8. 48), = ST The arbitrary choice 7= Te OF T= T,

has '.2en made wh suitable to simplify somewhat (8.55) and (8. 56). The
numerical errors incurred should normally be very small.

A few results have been obtained for the attenuation of a standing
wave initially excited in a box of length L. containing a gas/particle mixture.
These kave been carried out for direct comparison with the numerical
results reported by Levine and Culick (1974). First, two cases wil. be
given in some detail, The particle diameter is 2,5 microns, the particle
loading is K = 0, 36 and the frequency based on the equilibrium speed of

sound a is 800 Hz in each case. The material and thermodynamic proper -

ties are li.ted below:

Specific heat of the gas C, = 2021.8 Joule/kgm-°K
3Specific heat »f the particle material C, = 0.68 Cp
Isentropic exporent of the gas vy =1.23
Prandtl number Fr =0,8
Temperature T = 3416 °K
Pressure Po = 500 psi
- .66 -
Jiscosity of the gas p = 8.834x10 4 (TES_S) kgm/m™ ¢
Density of the condensed material Py = 1766 kgm/m3

The only difference between the two cases is that for one, the initial

an.plitude is Ap/po = 0.03 and for the other Ap/p0 = 0,15,
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Figures 8-1 and 8-2 show the waveforms obtained from the
approximate and numerical analyses. The approximate results are
the solutions to Equations (6.16)-(6. 2C); the linear coefficients a., Gn
are given by (8.26) and (8. 27) and the additional nonlinear terms by
(8.55) and (8.56). The period used to normalize the time scale is the
period 2L/a for linear waves based on the speed of sound of the mixture.
The similarities betvreen the waveforms and the generation and decay of
the even harmonics is apparent. There is a difference in the relative
phases between the even harmonics and the total waveform, This seems
to arise almost entirely in the first cycle of the oscillation; it may be
due to details of the numerical routines and the way in which the compu-
tations begin. This difference may therefore not reflect a genuine differ-
ence between the approximate and "exact'" analyses,

A more quantitative measure of the behavior is the instantaneous
''value of the decay constant, ap, calculatea for successive peaks of the
waveform. The histories of ey for the two cases are shown in Figures
8-3 and 8-4. Further remarks on the behavior of Qp may be found in § 7
of the report by Levine and Culick (1974), The purpose hz2ze is only to
demonstrate that the approximate analysis does give fairly reasonabl«
results for this case. There are, however, limitations, not yet clearly
defined, which arise from the approximate treatment of the nonlinear
acoustics as well as the gas/particle interactions,

The linear behavior used kere, described essentially by the velocity
and temperature lags given by (8.18) and (8,19), is, in fact, quite restrictive,
Although it is not apj.arent from the analyses pre.iented here, the work
reported by Levine and Culick shows that the results (8.18) and (8,19)

are accurate only when w T4 is small, If this condition is met, then § ug
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and 6Tp are relatively small, which is consistent with the general nature

of the perturbation analysis used here. For the 2. 5-micron particles,

d
1500 Hz (wq-d =~ 2.4) are shown in Figs. 8-5 and 8-6 for an initial ampli-

g7, = .08 at 800 Hz. The waveform and G.P for 10-micron particles at

tude of 3 per cent, computed with the approximate analysis. For this case,
a.p ~ -530 sec”! when the amplitude has decreased to 1 per cent; the more
exact numerical calculations give c.p ~870 sec'l. Finally, in Fig. 8-7,

the waveform calculated with the approximate analysis is shown for 3C-
micron particles at 1500 Hz (wr, =~ 25. 8). The vaiue of ap is -70 sec.l at
an amplitude of 1 per cent, and the numerical analysis gives -148 sec -1,
Note that the fractional error between the approximate and numerical re-
sults for a.p increases with increasing wT 5 The greater amount of har-
monic content present when larger particles are considered is due mostly
to the reduced drag and hence reduced attenuation at the higher frequencies.
The results from the approximate analysis can be improved for highex val-
X

ues of wT 4 by using different functions X instead of (8.20) and (&.21).

1’2
Wave propagation in a gas/particle mixture is dispersive; the speed

of propagation depends on the frequency and particle size, through the pa-

rameter wT g as well as on the amount of condensed material present.

For the problems treated here, the length of the box., and hence the wave-

length of the waves, is fixed. Consequently, a change in the speed of sound

ic .eflected as a shifr of frequency. The periods of the waveforms shown

in Figs. 8-1, 8-2, 8-5, and 8-7 are not exactly equal to the period based on

the equilibrium speed of sound. It is obvious from the figures that the fre-

quency shift increases witt w7,. In §12, it is shown that to first order, the

frequency shift due to linear dispersion is &f = -8/2m; here, 8 is given by

(8.27) for the nth mode. The actual frequency change is dominated by 91 :



-52.

TABLE 8-1

Summary of Results for Waves Attenuated in a Gas/Particle Mixture

v A B B LY I N R AT
(Microns) (Hz) (Hz) v (sec-l) (sec-l)
2,5

Approximate | 800 954 | 800 .08 1 .74 -59 -61

Numerical 800 9541 801 .08 1 --- -58 -59

Aoproximate | 1500 | 1788 } 1505 .15 5 4.8 203 -204

Numerical 1500 | 1788 | 1504 .15 4 --- -201 -204
10

Approximate | 1500 | 1788 | 1695 2.4 195 | 189.9 -509 -530

Numerical 1500 | 1788 {1740 2.8 240 | --- -509 -870
30

Approximate | 1500 | 1788 | 1740 21.6 240 |224.1 -67 -70

Numerical 1500 | 1788 | 1787 25.8 287 --- -69 -148

£ frequency based on the equilibrium

ft frequency based on the speed for the gas only, a.g = [(‘y-l)CpT’l%

f frequency of the calculated wave

6f = f - fe

(“p)lin

( 'p)¢

NOTE: Small differences arise in some quantities (w T4 and (ap)lin)

decay constant for linear waves, Eq. (8.76)

decay constant for the calculated wave at approximately 1% amplitude

which should Lave the same values when calculated by the approximate and

numerical methods,

property, most probably the viscusity.

This is due to a small difference in the value of some
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values of 91 and 61 calculated from the waveforms are given in Tab'e
8-1, a summary of the computations discussed here.

These. results serve to demonstrate that the nonlinear generation of
harmonics has substantial influence of the detailed cliaracter of the atienua-
tion of waves. The rather close agreement between the approximate rasu'ts
and the numerical calculations under conditions when the approximation to
the gas/particle interaction is more accurate suggests that the approximate
treatment of the fluid mechanics (i. e., the terms represented by Ie in (3.45))
is realistic, at least for moderate amplitudes.

Fiom the point of view of reduciug data for the attenuation by
particle/gas interactions, it is annoying that the vilue of the decay constant
changes 8o much as the waves die out (cf. Figs. 8.3, 8-4 and 8-6). Itis
possible that if the higher harmonics are filtered from the waveform, the
tehavior of a for the first harmonic alone may n:t be so extreme. Calcu-
lations have not been done to check this point.

Perhaps the s:mplest check of the fluid mechanics alone is cal:ula-
tion of the behavior of a wave in a box with no particies present. In tlis
case, the wave must of course steepen, eventually forming a shock wave.
Neither the exact nor approximate analyses can accommodate strong shock
waves, but the initial period of development may usefully be examined.
Figure 8-8 shows the exact result, and Figs. 8-9 and 8-10 show the results
of the approximate analysis when five and ten modes are accounted fo..
Again, the qualitative agreement is quite good. As one would anticipste,
the period of the wave decreases as the amplitude increases. For both the
approximate and numerical analyses, obvious distortion of the peak o.curs
at about the fourth cycle. (The sharp jags in Fig. 8-8 may be due in part to

the numerical routine, )
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IX. AN APPROXIMATION TO NONLINEAR VISCOUS

LOSSES ON AN INERT SURFACE

There are two reasons for examining the influence of viscous
stresses and heat transfer at an inert surface: these processes can be
significant stabilizing influences; and in the presence of oscillations,
the average heat transfer increases substantially. The second is a
nonlinear effect wh: ch has on occasion caused szrious structural prcb-
lems, particularly in liquid rocket motors. The main purpose of this
section is to show cne way of incorporating some experimental results
within the analysis developed earlier. As part of the argument, the more
familiar linear resvits will also be recovered.

The viscous stresses and heat transfer at a surface are, of course,
associated with a bcundary layer, but they can te accommodated here by
suitable interpretation of the force F and heat svurce Q in the equations
developed in § 2 . It is only those terms which are required in this

discussion, so the wave equation for the pressu. e fluctuation is simply

2 - =3 ' -
-—-L-a 5= - azvzp': —£R-— ——?V'F' . (9. 1)
ot Cv a
The boundary condi.ion is
A+9p' = B F' (9. 2)

For this problem, then, the equation for the amplitude of the nﬂ.l harmonic

is

n +w N

. 2 .7 R_ 4 JQy dv-z 2[Fr oy v} (9. 3)
= —L — J *
2R R g3, { e, © ; )

v

The heat source Q' is taken here to be associated with the heat flux vector

-— -
q', and the force F with the viscous stress te»sor T:



Q' =v.q' F' = 97! (9. 4)

Both a' and T' are significantly non-zero only in thin regions near the
boundary. Then if yv denotes the coordinate normal to the wall, measured
positive inward, dv = dydS and

aq I L
Q' - —53)3- F' =z —5}% (9.5)

The conventions used here are that q;r, the component of -ci' normal to the
surface, is positive for heat transfer to the wall, and 1_7‘.', being parallel
to the surface, is positive when the force tends {2 accelerate the gas, In
the volume integrals of (9. 3), \yn and v\yn are essentially independent of

y, SO one can write

w 3q '
= —X - - t
[y av~[[asy /o o IIq, v, ds (9. 6)
— r 0 a—. ' -
y ~ . = - ',
[Fv;_dvef]ds vy {) —Y-ay dy = -J/7 ! vy_ds (9.7
Here, the surface stress is '_r.w' = - u(aﬁ"/ay)w, ‘~here G' is the velocity

fluctuation parallel :o the surface, so

I g au' .
- Jfr evy as = oM 35w "y, dS (9. 8)

Only the linear stress will be treated, but both linear ard
nonlinear contributions to the heat transfer will be accommodated by
writing

s L)y R AT 9.9)
1y dy ‘w 0 w Lo

Owing to the thermal inertia of the wall, T“; ~ U; the temperature flu:-~
tuation Tool far from the wall is that associated with the acoustic field.
The average heat transfer coefficient, b, will be assumed in a manner

described below, to depend on the amplitude of the acoustic field.
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Equation (9. 3) can now be written

w 2 [l 384 v d aT!
Aotwin = —Z—EZ [T 5505, 7 4,38 - - ac g, v, 98
pO n pO n
R/C
v d - .
- 5 //hTOL v, ds 19.10)
pOEn

First, calculation of the linear parts will be outlined, The known
solutions for the velocity and temperature fluctuations in a sinusoidal acoustic
field are

w = a[1-e MV ]elat

1 (9.11)
T = 'f [l_e-(Pr)-’-ly]eiwt

where @1, T are the amplitudes far from the wall, and

A - %(m) 5 = Jov/w (9.12)

Thus, for purely harmonic oscillations,

o'
“ %y
aT!

1 A
( 5o), = 5 (Pr)? (if &

t

g(lﬁ)ﬁ e

t

As in the preceding section, the replacement i » w 8/0t is made,

th .
and for the n ~ harmonic one has

au’ \ w1\ .
(v By / 5 ('—"‘z/ (M- wn M) (V¥
w k

()

where (V \yn) y is the component of V\z/n parallel to a' at the surface. Sub-

1
2

~~
=
@
&
>
)

C'li 5

( -1) To<nn+ ;};ﬁn)wn

“|

stitution into (9.10), and some rearrangement leads to
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R/G_ =
3 2 (v), s v 17-1 d o 2 y
intOn M= -20y (-0 )e —3 (BT, 5 [/hn v as i9.13)
p0 n
vhere
1
(w_V/2)? vy 2 =
(v) _ n 1 f/[ n y-1 1/ 2 .
o'V - - + y< as {9.14)
n 2(T+c_V L2 (kn) Pr n

n

it has been assumed that the motion far from the wall is isentropic, so
r;n:(y-l)('rop'/ ?po ) For a longitudinal mode ix a straight cylindrical
sube,

vy 2
ff(—k—nn—) as = [/ \v:‘ dS = wDL/2

and with Cm =0, (9.14) becomes the familiar result for the decay constant

ey

VPr

‘or a standing longitudinal wave:

s
ol

The treatment of the remaining term in (9. 13) rests on appeal t» some
recent experimental results, Perry and Culick (1¢74) have reported meas-
urements of the time- and space-averaged values of the heat transfer cref-
ficient in a T -burner with propellant discs at the ends, Denote this coef-

ficient by (h ). The data could be quite well represented by the expression

T 1
<hk> 5 - 0.044 Re? (9.15)
where [" |
P )
Re, = ——— (9.16)
Ua

The symbol If)‘ m represents the maximum amplitide of the pressure iluc-
tuation, namely that measured at the end of the T -burner; this is equal to
th
polnnl for the n mode.
In the absence of any other information, two assumptions will be

made, First, it is reasonable to assume that the local time-averaged heat
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-ransfe- coefficient is also proportional to the square root of the pressure
implitude, as (9.15) shows for the space-averaged value. Hence, for the

ath mode,
- %
F=kK lvnl 9.17)

~here Kn is a constant to be determined. The second assumption is that

:9,17) is valid for all modes. From the definitions of h and (h) ,

[

L
(b)Y = é-!ff{ds =1/ hda (9, 18)
o]

for a cylinder. It follows from (9.15)-(9.18) that the constant K is given as

kh/f’— w < L, 1 -1
K = U044 o ( 2)*[_113 [ v ladz-'
n Jpga rAY o ® -

The integral has the value
1 / |l / 5
= 2 <
T ol‘l/n dz A | cos knzl dz = .765

h

(o o

SO

 o.ests PP (S Y
JpE

Note that the mode shape cos (an) is used to obtain (9. 19) because the data

K (9.19)

2v

was taken in a uniform tube. The assumptions introduced above imply that the
result is supposed to b= valid for a local surface element whatever may be
the mode in the chamber.
With (9.17), the last term of (9,13) is
= - T K 1 1
R (1_:1_) _r_n 2 z 45 4 H
— =5 2 HvE v 12 ds 5= (n_In_[2)

v Y 0 En

The constants can be combined as

i 5. - -2 &
H =0.0575 »¢ 22l (3 fnaz)“‘J'
n Pr y?

(9.20)

n
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1= 11y 2 as
n 2 n''n (9.21)

Equation (9.13) is now
Araln =208 -0y -H_ Sn |n|?) (9. 22)
n n n n n nn ndt *

When substituted into the formulas (6. 1) and (6. 2) obtained with the

method of averaging, the linear terms give

2n/w

1 1 cos W t1 1 An-Bn
Z L ey { 51nthdt i {am) (9.23)
o n n
Define the angle COn as
Bn An
sinCPn = — cos Cpn = —— {9, 24)
AZ’B2 /A2+L2
n n N'n Tn

and one can write

1 . ,3/4 N
2 - £ : . - >
ndn 1 = af+By)  sin(w o )|sin( tio )|

The integrals (6.1) and (6.2) arising from application of the method of

averaging to the nonlinear term are

2 mw

1 1
2 {) sinwt m I?']nl ydt

(A +BZ)3/4
/ RS

COS8 v
sinf

[s1n(9+€p )|s1n(91«0 )2 2:]de

where 8 o w t. The integrals can be reduced in much the same way as those in

§ 8 to give
(»X +B2)3/4 {cost n/2

1
6 - 5o sinw } f cos \l/s:m2

ydy

The integral has value . 478 and the final result for the nonlinear term in

(9. 22) is
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2 2.3
2w/w
Y d 1% t} 1,434 ) 0t +B“)
2w H & mnlnn| ){ -sinw t dt=H (=7—\8 (A2+B2)‘1 (9. 25)
o n"n " n
The equations for An and Bn’ with only the viscous losses showr are
‘herefore
dA 1
n_ _ (v) .4 _ _ 2. 2.3 .
T -~ %, ‘An Bn) . 457 Hn An(An + B ) 9. 26)
EE& = -V (A +B )-.457H_B_(A%+B 2)% 9.27)
dt - n n n ° n n'n n (9.

In the special circumstance when these equations are applied to waves in a

cylindrical chamber with an inert lateral boundary,

1.836
n R

C

where Rc is the radius of the chamber. Then the coefficient in (9. 26) and

(9. 27) can be written

— - f
1,143 y-1 [
.457TH_ = = — | ( X M ) l (9. 28)
n R,  pr 7: L 10 -4 1ooo "o'oT

. = 2 -
where the units are: Rc, meters; V, (meters) /sec ; fn, Hz; and a ,

meters/sec,
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X. CHANGE OF AVERAGE PRESSURE ASSOCIATED

WITH UNSTEADY WAVE MOTIONS

There are often circumstances, particularly in solid propellant
aaotors, when a substantial increase of the mean pressure may accompany
unstable oscillations. This can become a serious practical problem, hut
it will be treated here only to the extent that one aspect is related to the
analysis developed in the preceding sections. It should be remarked in
passing that the likely cause of large DC shifts of chamber pressure in
motors is usually a change in the purning rate of the propellant, perhaps
associated with the erosive action of unsteady motions parallel to the burn-
ing surface. That subject will not be discussed here.

The main point of this section is that the zeroth term in the expan-
sion (1. 6) represents a DC shift of pressure; the corresponding frequency
and mode shape are v, = 0, wo = 1. In all the preceding discussion, and
in other works as well, the influence of a small a erage change of pressure
has been ignored. Ali the formalism developed in sections 2 and 3 is valid
and can be used to compute the change of average pressure due to the un-
steady motions, as well as its influence on the wave motions. From (4.1)

and (4.2), the equation for Mo is found to be

dz'no @ o X
—2 = D) (D +E_.M.)- DY (A hh 4B ] (19.1)
dt i=0 i=0 j=v ) b

The values of the coefficients Doi’ EOi depend on the processes considered.

For example, with Dli given by (3. 41), one can easily determine the results

- w
D= YXL[_Bay (10.2)

(6] 0]
Pg



D, -Ylly P oay (10. 3)
01 v 1 -
Pe
D = - rj‘%-vw dv+§-1) [ "p dv (10. 4)
no -E 1 n Y- wn; )
n

g

where the factor v ar‘ses from Ej = v . Itis interesting also to examine
the term arising from surface combustion; this can also be interpreted to
represent other sorts of processes as well. The tarm in question on tle
right hand side of (3.41) is

%aitﬂwnds , (10.5)

For purposes of illustration, the fluctuation of the gases leaving the sur-
face is assumed to be simply related to the pressure, and R is approxi-
mated by (7.7),
o.
T = e, 1 qli) 2 ] ,
R~ poubzo[ﬁi — R no; - (10, 6)

Equations (10.5) and (10. 6) give

Yub10~”[R’(r .-wR 'n']\JJWdS (1¢.7)

in which the approximation nl e -wizni has again been used. Comparison
with (3.40) shows that the corresponding additionas terms on the right hand
side of (10.1) are

Yub
v

23 j"[a(” mﬁ’, nwd

-5
b T R( )(H‘O)n a5 b b Z ﬂ[ﬂ(r)ﬁ SO )n TudS . (10.8)

The first term represents the contribution to the change of average pressure

in the chamber (really the second time derivative) because the surface
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combustion itself responds to the average change of pressure.

Suppose, for example, that all other terms are ignored and that

(r)

the responsec Ro is .niform over the surface. Then (10.7) and (10. 1.

give

_ (),
dt = Y RO (w—O)'H-t—Sb (10. 9)

where Sb is the total 1rea of burning surface. According to the discussion

in §7, see eq. (7.4) and following remarks, Ro(r) may be approximated by

the value of Rb(r) at = 0; thus, *Ro(r)(w:O) ~ n, and (10.9) is
dzr ng dn
= n dto S .
dt(' v b

The first integral is

dp! S
o _ — = b
I e N (10. 107

where p! is the change of average pressure; the constant of integration has
been set equal to zerc which merely sets an acceptahle initial condition,
Now (10, 10) is simply an expression of the change of pressure in a closed
chamber due tc mass addition. To see this, note that conservation of mass
provides

d
dt (pv) = pchb

where p  is the dens 'ty of solid and r is the linear burning rate. The
perturbation of this ecuation combined with the iscntropic relation p ~ pY

gives
1
pov dp() _ r|q
p_dt YTy

(9]
But r' & n(p'/po)? and pc; pOUb , so the last equation becomes (10, i0).

The point of this clementary exarmple is that the elaborate formalism de-
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veloped for unsteady motions does indeed contain familiar quasi-steady be-
havior. A term representing the influence of erosion can also be incorpo-
rated in this analysis, but it will not be considered here.

It may be noted that the remaiing terms in (10.7) sometimes con-
tribute nothing. For .he case of longitudinal modss with a burning surface
exteading the entire length of the chamber, for example, the integrals of
\L'i over the surface vaiish. Interactions between the wave motions and
surface combustion then contributc nothing to the average precsure in the
chamber.

The nonlinear terms contained in Ie , eq. (3.45), also contribute
to the average pressure in the chamber. Only the parts containing p' as a
factor are involved, and it is not difficult to use the results (3.58) and (3.59)

to determine the following formulas for the coefficients:

y-1 Elz 2
B .. = Y= (—-)w (1C. 11)
012 g‘ v 1
B -yl 2 (10.12)
noen q‘ n

All others vanish; there are no non-zero values o’ Anij for n, i, or j equal
to zero. According tc (10. 1), the nonlinecar interactions produce a negative
contribu’® n to the second time derivative of the average pressure:

d& 2

< h") - -<-—‘l>§)«u.‘2 <Ei\‘q.2 . (10.13)
dt nonlincar v
It is perhaps surprising that the sign is negative. Because in some scase
the processes involved represent a dissipation of cnergy from the wave mo-
tions to the average s‘ate, one might have anticipuated a positive sign ¢ ... .
sponding to a tendenc' to increase the pressure. The interpretation is not,
however, clear at this time.

The influence of changing average pressure will not be considered

further in this repori,
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XI1. APPLICATION 1TO THE STABILITY OF

LONGITUDINAL MODES IN MOTORS AND T-BURNERS

It has been shcwn in §6 that the nonlinear terms simplify consider-
ably for the case of lungitudinal m~des. This situation will be treated
her: for several examples. Some prel’ ninary results were reported »y
Levine and Culick (1974). Application to large moctors was examined bty
Culick and Kumar (1974). The discussion here is to demonstrate k .w the
approximate analysis can be used to study pr. :tical configuraticns anc to
provide a limited comparison with the more exact numerical results r=-
ported elsewhere.

For all the ca.culatio: »orted in this scction, the follocwing ma-

terial and thermodynsmic pi ~perties are uscd:

specific heat of the gas Cp =2021.8 f{';%l?‘dﬁ
speci. : heat of the p. rti: ' material C, = 0.68 Cp

thermal diffusivity of the propellant x - 107 m /sec2

Prandtl nuruber of the gas Pr - 0.8

viscosity of the gas u= 8. 634x10"4(T/3485) 66—}?_{%{
isentropic exponent o: the gas vy = 1.23

linear barni g rate o: the propellant T=0 00812(po/500)°3 m/sec
density of the propell int p. = 4000 kgm/m3
density of the conden-ed material P = 1766 kgrn/m3

11.1 Applica ion to a Small Cylindrical Motor

Because the n 'nlinear acoustics terms represented by I€ , ea.i13.45),
are given explicitly, ‘he first s.ep in th> analysis consists in evaluating the
¢ontributions to the linear - fficients a. and Bn . Four contributions to

linear stability ure it cludcd; arising f=¢m the noxzzle, the condensed 11a-
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terial in the gas phase, the surface combustion pr«cesses, and the one
dimensional approxim tion to inelastic acceleratio of flow issuing from
the lateral surface (‘'f ow turning'). The formulas for the correspondig

values of an are

Nozzle _
3y
2(y-1)
=7/ 2)
A s - (E)\:_l (11.1)
Particles
1/ =» \[ — C —‘
R AN e R R i e B (11.2)
p L—.Ln
Flow Turning
S
o= b>
Cln ~ -2 ub K—f (11.3)
Combustion
o= (P ()
@ = ayub\\v)Rb (11.4)

The formula (11. 1) is based on quasi-steady behavior; the velocity fluctua-
tions are in-phase with pressure fluctuations at tle nozzle entrance. !ience,
the response function has no irnaginary part and, as shown by eq. (7. 1t),

the value of n for th: nozzle is zero. The term representing flow-tucning
is the last one in (3.41); there is no corresponding Eni , SO Bn is als. zero
for flow turning. The only non-zero values are for the gas/particle inier-
actions and combustic n; the first is given by (8.27%) and the second by use of
(7.10) and (11.4);

Particles

' \r _
0, - 2l = 5 (11.5)
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Combustion

5 . _%;—b<vb)R(i) (11.6)
The two examples treated here were discussed in §7.4 of Culic < and

Levine (1974), where the result of the numerical ¢nalysis is given. E.ch

is for a motor having a cylirlirical bore and lengtl. 23. 5 inches. The 11ean

pressure, port area, and th»oat area differ and aie given below:

(a) (b)

Length (in. ) 23.5 23.5
Port Area (inz) 3.33 4.73
Throat Area (inz) . 439 . 562
Pressure (psia) 1568 1412

These are the first and last cases given in Table 7-3 by Culick and Levine
(1974). The fundamental frequency is 900 Hz.

For both cases, the particle diameter is assumed to be 2. 0 microns
and the mass fractior is % = 0. 36. The combustion response is taken to
be tlie representation (7. 4) given above, with A = 6.0 and B = 0.56. Le-
cause the pressur :s zre differeut, so are the flane temperatures in tre
two cases; for (a), T = 3525°K and for (b), T = 3515°K. The small uvif-
ference has only minor influence on the resulits.

With the abov. values, and the formulas ‘11.1) - (11.4), waves
for case (a) are founc to be stable. The values of the decay constants for
the first five modes «re given in Table 11-1 belov . The numerical ccicula-
tions produced an unstable wave which, with an initial amplitude of 5 jer
cent (fundamental mc le) eventually reached a limiting amp'itude of 4. ® per
cent. In view of the su..essful comparison for the cases treated in § 8 for

attenuation by particl > damping, ard because the representation of the
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TABLE 11-1. Values of an and Bn for Three Cases of

Unsteady Motions in a Small Motor.

Case (a) Case (aa) Case (b)
-18.5 (sec™ 1) 8.0 (sec™}) 9.1 (sec™})
-259.3 -342.8 -334.8
-€10.1 -583.6 -566.5
-315.9 -889.4 -871.4
-12329.2 -1262.7 -1244.0
12.9 12.9 64.0
46. 8 46. 8 34.9
-29.3 -29.3 -35.6
-131.0 -131.0 -135.0

-280.0 -280.0 -283.0
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combustion response is the same in the approximate and numerical analy-
sis, a likely source of the difference in the results is the behavior of the
nozzle.

In the numerical analysis, the calculations for the entire two-phase
flow were carried out to the nozzle throat. The influence of the nozzle is
buried in the results a2nd its contribution to attencation cannot be determined.
For the approximate analysis, the influence of the nozzle is represented as
a surface admittance function evaluated at the nozzle entrance. The re-
sult (11.1) is strictly valid for quasi-steady behavior of a gas only; it has
been extended to the case of two-phase flow by using the value of y for the
mixture. The point i3 that there is reason to expect that the contribution
of the nozzle is different in the two analyses.

Ac a means of comparing the analyses, the value of the attenuation
constant associated with the nozzle is chosen to cbtain he same limiting
amplitude as found ir the numerical analysis. This procedt ¢ rests cn
the observation, elaborated upon further in §1c, that the values of the
limiting amplitudes are quite sensitive to the values of the linear coeffi-
cients Q. Qn .

Not a very large change is required. Equation (11.1) gives a. =
-153.25 sec'l. If th:s is changed to -126.75 sec'l, thena, = 8.00 ad

the limiting amplitude is about 4.2 per cent. The values of the a, ard Bn

fo: five modes are given in Table 11-1, for the case denoted (aa). Figure
11-1 shows the amplitudes of the five harmonics considered; the functions
Al and Bn are showr in Figure 11-2 and 11-3, and a few cycles of the wave
at limiting amplitude are given in Figure 11-4,

The attenuation by the nozzle is assumed to vary linearly with the

ratio J of throat are 1 to port area, having the value -126.75 sec'I when J
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has the value (. 132) for case (a). Then with the other required data given
above, the approximate analysis applied to case (b) produces the results
shown in the last column of Table 11-1. The initial disturbance is stable,
the decay constant for the first harmonic being a, = -9.12 sec'l. After
twenty cycles (. 02222 sec) the amplitude is roughly 3. 5 per cent according
to the approximate anal ysis. The numerical analysis gave an amplitude of
3.02 per cent after tventy cycles. It appeared that the wave may have
stabilized at a limitir.g amplitude, but the calculation was not carried
further. In view of ii:e slow decay found with the approximate analysis,

it may be that the conclusion based on the numerical analysis, for onlv
twenty cycles, is incorrect, based on incomplete results. If a true

limit was indeed reached, then of course the approximate analysis gives
the wrong result. A iimit of 3 per cent would be reached only if @, is
positive, hav.ng a va'ue less than 8. 00 .

That nonlinea_ influences are in fact active, even at such relatively
small amplitudes, is easily established. Consider a wave having a decay
constant equal to -9, 12 sec'1 and a frequency of 900 Hz. According to
linear behavior, the amplitude would be 4. 08 per cent after twenty cycles
if the initial amplituce is 5 per cent. The more vapid decay shown by the
nonlinear aralysis is evidently due to the transfer of energy, through the
nonlinear processes, from the fundamental oscillation to higher harmonics
which are then attenvated much more rapidly. Nonlinear particle darnping
was included in the approximate analysis but, as one should expect fo - the
small amplitudes arising in these examples, its influence is negligiblv

small.
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case (aa) of Table 11-1.



-84.

0.05

i ] 1 1 I

0.02

O
Z<
T
o
<
(=]
!
wn
e
¢ 1 | 1 | 1
0.0 0.0s 0.10 0.15 0.20 0.25
o MECSEC)

Figure 11-2. The functions An(t) for casc (aa) of Table 11-1.

0.30



0.05

0.02

3N
~0.00

-0.03

-0 005

-85-

1 1 I ] T
B
B,
Bs
B,
| | | 1 L
0.0  0.05 0.10 0.15 0.20 0.25 0.30
TIMECSEC)

Figure 11-3. The functions }’,n(t) for casc (aa) of Table 11-1.



REPRODUCIBILITY OF THR
ARIGINAL PAGE I8 POOR

-86-

0.05

0.02

WAVEFORM
-0.00

RRRARRRRARARR

] | | ]
0.0 0.0080 0.0080 0.0120 0.0160 0.0200

TIMECSEC)

8
?

Fig. 11-4 Waveform at limiting amplitude for the example shown
in Fig. 11-1.
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11.2 Application to a T-Burner

The numerical analysis has also been used to analyze a T-burner.
Both the caiculation and the data are for flush cylindrical grains. Data of
course can be obtained only approximately at that rlush condition.

Most of the properties used are the same as those listed above, with
the following exceptions. The flame temperature is 326401{, the particle
diameter is 3. 0 microns, and the parameters in the combustion respoase
are A=8.8, B=0.67.

The T-burner differs from a motor most importantly in two respects:
the vent is in the cent:r, and there are substantial areas of inert surf:ce.
Apart from possible interactions between the non-uniform mean flow and
acoustic velocity, one expects that the center vent should have very little
influence on the fundamental mode. Indeed, all odd modes, which hav>
pressure nodes at the center, should not be much affected. Indeed, all
odd modes, which have pressure nodes at the center, should not be much
affected. In the calc' lations discussed here, the vent is assumed to have
no effect on the odd modes.

Because the even modes have pressure anti-nodes at the center of
the burner, they will be intiuenced by the vent. I'or comparison with the
numerical results giten by Levine and Culick (1974), the flow in the v«nt
is assumed to be subsonic and to respond as a plug flow. If the plug has
effective length 1 v and the pressure downstream is essentially consrant,
the vent exhausting into a surge tank, then the equation of motion for the
plug is

du'
Pty Gt P o (11.7)

where u' is positive outward from the burner. For harmonic motions, .ne
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amplitude of the motion is
a = - w1 P (1.8)

The admittance function for the !,th mode is therefore given by the formula

_ ({ 4/3 _ i
A, = \A/ ) e SR (11.9)
PPy o7

Because the velocity fluctuation of the plug is ninety degrees out of phase
with the pressure, the admittance function has no real part and there will
be no contribution to the linear decay constant. The representation of the
vent as linearized inviscid plug flow introduces no losses. If viscous ef-
fects or radiation to ihe surroundings are included, the phase between the
velocity and pressurc¢ fluctuations is changed and there are then associated
energy losses.

The influence of the vent is accommodated in the nonlinear formu-
lation by the term containing R in (3.40), where R is defined by (3. 42).
Let Fv denote that term so that, if only the effect of the vent is consi<ered,
the equation for the amplitude -f the nt]"1 mode is

n +uq2‘n = F (}1.10)

F, = _j-E_Z T RV dS (11.11)
p0 n

R, = -(pou;’ﬁv_E':) (:1.12)"

P2

The argument used i:. §7 will again be used here .0 adapt the admittar :e
function (11. 9),defined only fcr harmonic motions, to the general case¢ of

unsteady motions. Then Fv can be written

“Note the negative siyn in R, *to account for the fact that both u; and H‘
are positive outward.
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¥ d 202, (r)_ . 1 (i), 4.,
FV: - _&-‘I‘Iwn [T'-(AV nnr'N_AV T’.'n)*}h j— ﬂnpo ds
En Y n poa~

The integrand is nearly constant over the vent, and with Ef = SC L/2
r—N, S
: SERCIPON
F = B nPunMn szn(r S—C Ay Ing

T @ o2 ]r,

According to the rule (6. 10), the linear coefficients for the nth mode ‘re

a = %Dnn:-"'(é){(i-"’;)Av(”)Jrzmb:E} (11.14)
0y - ho - (E) ()Y . 1s)

If the mean flow term (proportional to IT/Ib in (11. 14)) is neglected,and the
admittance function is purely imaginary, as fcr (i1.9), then only the .oef-
ficients Gn for the even modes are affected by the oscillating plug flow.

It is not difficult to work out the formulas for the linear coeffirients
arising from combusrion, particle/gas rateractions, flow-turning, and heat
losses on the lateral boundary. They are given here for the case of c/lin-

dr’'cal grains of length Lb extending from the ends.

Combustion
Lu T in2k
o -(u_b\( i <1+sm an>R(” (:1.16)
L YA 5. ) ZE L /b L
Rb(l)
en‘ —Wan ('1.17)
b

: 2. . . .

Here, S, - TR is the cross-sectional area of the burner, Sv i8 the (rc¢ss-
sectional area of the vent, and Sy, is the area of burning surface in one half
of the burner.
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Particles
1 m \:
d.n = --2-\—7;{> X1+(Y-l)§_xzj (11.18)
p w=w
2 2
W Q Q
_on{ w ([ _Td = C t .
l+{2d C_ 1+Q
P t w-w
n
Flow Turning
o - z(fli)i’ﬂ’_)[l-smzk‘"LbJ (1i.20)
n vr o/ L anLb ’
en = 0 (11.21)

Linear Heat Losses

o = -/ (T (2 2 ) 2 (1 T ) 12y

7 Pr J Pr n b

8 = - Q (:11.23)

Once agoin, the combustion response is assumed to be given by (7.4) for
pressure coupling oniy.

Both nonlinea particle damping and nonlinear heat losses are in-
cluded in the calculat.ons. The first has already been discussed; the formu-
las are the same as fnose used in § 8. Nonlinear heat losses are handled
approximately by using the formulas worked out {or a tube, in &9, bu’
weighted by the propcrtion of Jat:ral surface which is inert. Thus, the co-
efficient given by (9. 28) is multiplied by (L-ZLb)/L . Although nonlinear
heat transfer may be important in setting the values of limiting ampli- ades,
particularly for tests with unmetallized propellants, very little is known at
the present tune. N¢ extensive numerical results have been obtainad spe.

cifically to determinc its influence.
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Calculations have been done for an example treated numerically by
Levine and Culick (1974). The propellant is the same as that used in the
examples discussed in §11. 1. Owing to heat losses, the temperature in the
chamber is assumed to be somewhat lower, T, ~3264°K, roughly in accord
with observati~=.. Also, the particle diameter is assumed to be 3,0 mi-
crons, and the parameters in the combustion response are A =8.8, B =
0. 67; these values were chosen somewhat arbitrarily to produce the cor-
rect growth rate of unstable waves, and should not be taken as representing
the actual behavior of the propellant. The computed results will depend
quite heavily on the combustion response. The main purpose here is to
compare the approxirmate and numerical analyses.

With the data given above, and with LL = 22, 5 inches, R.c = 0. 75 inches,
the values of the constants @ _ and Bn are listed below in Table 11-2 for two
values of Sb/Sc. For Sb/Sco = 7.06, two cases are shown: in case (a),
there is no influence of the vent; and in case (b), the unsteady flow in ihe
vent is treated as a plug flow, as described above. The values of the e,

and Gn are listed in Table 11-2, The values for a, computed with heat

1
transfer neglected agree almost exactly with those deduced from the unstable
waveforms produced py the numerical analysis. The amplitudes of the first
five harmonics, for the case Sb/SC = 7.06 and with no influence of the vent,
are shown in Figure 1.5, In Figures 11-6 and 11-7 the functions An and
B are shown, These should be compared with the results for the example
for behavior in a mot>r covered in § 11.1. For that case, all harmonics
reached finite limiting amplitudes when the functions An and Bn oscillate

with fixed amplitudes and frequencies, Here, the first harmonic grows

without limit, and although the amplitudes of the higher harmonics show a
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Amplitudes for unstable oscillations in a T-burner,
case (a) of Table 11-2 (no influence of the vent).
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TABLE 11.-2.

Values of a and Sn for Two Cases of

Unstable Motions in a T-Burner.

Case (a) Case (b)
a, 73.9 (sec-l) 73.9 lsec-l)
QZ -319.2 -319.2
a3 -725.7 -725.7
34 -1195.0 -1195.0
QS -1691.1 -1691.1
3 49.2 49.2
92 7.5 -1560.0
63 -186.0 -186.0
64 -490.5 -1275.0
95 -915.0 -915,0

decay period after about 0. 05 seconds, they too 2ventually grow withouvt
limit. It is a curious result that the functions Al(t) and Az(t) are almost
identical; note that Bx(t) and Bz(t) are considerably different. Why this
occurs in this special case is an unanswered question.

The amplitudes and the functions An(t), Bn(t) are shown in Figures
11-8, 11-9, and 11-1U for the case (b) of Table !1-2. Comparison with the
results for case (a) shows the influence of the plugz flow. As noted above,
this treatment of the vent provides no losses, hut there is a change in the
relative phases of the harmonics, because the values of 92 and 94 are
quite considerably affected. The most notable feature is the decrease of
the amplitude of the first harmonic in the period .05 - .09 sec., after which

it again grows without limit. The values are unrealistically high, much
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larger than those obsecrvec for the tests which were the basis of these cal-
culations.

It is a puzzling difficulty at the present time that for apparently
realistic values of the data required, the calculated amplitudes for motions
in a T-burner are much too large and may even grow without limiting. This
has been the case with other examples not included here. A similar diffi-
culty was encounterec. in the numerical calculations. For the case (b),
the numerical results seemed to indicate that the amplitude was limiting,
at a value of roughly .37, at approximately .08 seconds; after this time,
the amplitude of the fundamental mode according to Figure 11-8 begins to
grow again. The numerical results were not carried out further,

Thus, for the examples treated here, limiting behavior has not been
obtained for the unstable motions in a T-burner. Even with the growth con-
stant for the fundameatal mode arbitrarily reduced, the amplitude grows
without limit; as a, tends to zero, a longer time is required for the ampli-
tude to reach unity. This is a striking contrast with the results obtained
for a motor. In both cases, reasonable values of the required data have been
used. But as shown by Tables 11-1 and 11-2, the relative values of the an,
Bn for the various harmonics are considerably different. This is clearly
the origin of the difference in nonlinear behavior, but the details are not
known, and no generalizations can be offered.

The difference between cases of limited and unlimited growth appears
strikingly in the functions An(t) and Bn(t). If the value of Bn is non-zero,
both functions oscillate (see §12.2) when the amplitudes limit. Otherwise,
the behavior has no covious pattern. The contrast may be seen by comparing
the results of §11.1 with those shown here. This question is remarked upon

further in §12.2, but . general answer is yet to be found.
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XIl. THE CONNECTION WITH LINEAR STABILITY ANALYSIS AND

THE BEHAVIOR OF A’ ROXIMATE NONLINEAR SOLUTIONS

Most problems of combustion instability in solid propellant rockets,
liquid propellant rockets, and in thrust augmentors have been studied by
using linear stability analysis. It has been emphasized in the formal con-
struction of the analysis given here, and in the examples covered in §+ 8
and 11, that the linear coefficient a is exactly the familiar decay or
growth constant for the nth harmonic. One of the appealing features cof the
results (cf. eqns. (4. 18), (4.19), and {6. 10) - (6. 12)) is that the corre-
spondence is so readily established and obvious. In practice, this meuns
that the numerical results obtain :d from linear stability analysis may be
used directly in the approximate nonlinear analysis. Indeed, for the ¢x-
amples given in § 11, the cost of doing the necessary linear calculations
was comparable to that of the nurmerical solution to the nonlinear equations.
In § 12.1, the relation betwee the present analysis and the more familiar
linear stability analysis is elaborated upon further.

One of the interesting questions which arises in connection with the
nonlinear analysis is: under what conditions will the motions reach a
limiting amplitude? Put another way, for what ranges of the linear coeffi-
cients [an , Gn} will the system of coupled nonlinear oscillators execute a
limit cycle? [/ .the >resent time, the answer to this question is not kaown,
and therefore it is also not possible to offer any veneralizations about the
values of limiting amplitude, and how they depen: on the linear coefficients.
A few remarks on this subject, which merits fur her work, are given in

5 12,2,
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12,1 The Connection with Linear Stability Analysis

All analyses of linear stability are ultimately related in one way or
other to the inhomogeneous wave equation with inhomogeneous boundary

conditions, having the form

1
L2 o=, (12.1)
a ot
A.vp' = f . (12.2)

For the formulation given earlier, h stands for the sum of hk1 and the
linear part of hV in eq. (3. 8); f represents fs ) fu and the linear part of
f in (3.9..
v

The linear stcbility of norma. modes is studied by assuming that
p' has the form

p'(F.t) = ﬁ(;)elakt , (12. 3)

and the problem come s down to determining the mode shape ﬁ(;) and the

complex wave number k :

k = = (w-ia) (12. 4)
a

where C is the grov:th constant for the perturbed nth mode. Because h
and f are linear in perturbations (they both contain the velocity a' s well

as p'), they may be written in the form

h(r,t) = h(D)e?kt | gFt) - feldkt (12. 5)

Then (12. 1) and (12.2) become
v5+K%8 - n (12. ba)
Sevp = of (12. 6b)

The functions h and f are of first order in the Mach number of the mean
flow, assumed to be small. It is then a relatively simple matter to ¢educe
a formula for kz, valid to first order in the Mach number (Culick 1975,

for example):
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2 2 1 N by .
kK“ = k +;z-{jwnhdv+§wnfd5} (12.7)
n

n

Equation (12, 7) is based on an iterative procedure; this first approximation
requires substitution of the unperturbed mode shape (ﬂrn) for the acoustic
quantities appearing in h and f .

Because an/w << 1, the real and imaginary parts of (12.7) can ve

written
wzwz —E—.-Re{jw ﬁdv+§§w fds} (12. 8)
“"n ¢ n n ‘ :
poEn
a N : .
O.n = -g—(;E—Z'JHI{IthdV‘Fﬁwnde} . (12. 1)
o L

It is helpful to make *he discussion more specific by considering only one
term for a specific problem. For this purpose, ihe contribution from
surface combustion i1 a cylindrical motor serves quite nicely. Then ac-

cording to eq. (3.4),

du' . .
f = po—a-‘ n N (12. 10)
s80
f = fakp v+ . (12. 11)

Then with the definitions introduced in § 7.6, and if non-isentropic tem-
perature fluctuations are ignored, (12.11) can be expressed in terms of
the response function:

~

f - -i'a-kpoﬁb(Rér)+in(i))E% . (12. 12)

Substitution into (12. 8) and (12. 9) gives

Few? o v, (g&)2w R B, (12. 13)
C
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- 2 (r)
@ = yub(-R: )Rb (12. 14)

Now because it is a requirement, in order for th.- calculation to be valid,

that the perturbations be small, w must not differ much frem w, . s0

(12. 13) can be written

] 3 (2R
6wn = w-wn o Yub( P: )Rb (12. 15)
More generally, (12. 8) gives
UJZ-UJnZ 3‘ ~ .
_en=_,_w;_.~w-wn~mae{j‘wnhdv+ Hu fas} . (12. 16)

on n

For most work in the past dealing with combustion instability, the
frequency shift due to perturbations has been ignored. It is normally too
small to be distinguished in experimental work. However, it happens, as
the example in § 11.2 suggests, that the nonlinear behavior -- in particular
the limiting amplitude -- may be quite sensitive to those characteristics
which cause a linear frequency shift. The reason is that the phase rela-
tionships between the various -irmonics are affected.

The formal connection between the linear stability analysis and the
nonlinear analysis based on the method of 2veraging may be seen most
quickly by compariny eqs. (12. 14) and (12. 13) or (12. 15) with eqs. (7.9)
and (7, 10), which for a cylindrical grain become (11.4) and (11.5). For
this special case, the values of a are the same, and

Bn = -6u)r1 . (12, 17)

The fact that the linear coefficient en is the negative of thr frequency shift
can be shown quite easily by starting with the definition of Ny, ¢

nn = Gn sin(u)nh ¢n) = An Sin(ljjnt) + Bn cos(wnt) . (12.18)

The frequency of the actual wave (i. e., when perturbed from the mode
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havinz frequency wn) is

d .
o= aT(wnt‘i'd)n) = (Dn+¢n

so
bw_ = .i;n . (12. 19)
Now tan¢ = Bn/ A, and differentiation with respect to time gives
¢ B“( = An)—z—z-Anz (12.20)
n A Bn An A S4B '
n n
The linear parts of thz equations for An and Bn are, from (4. 18) and
(4. 19),
dAn
= unAn + ean . (12.: 1a)
dBr-
I O.an - enAn . (12.21b)
From these it follows that
B A AZip?
... s ( n_n )
B A n A B ’
n n nn

bw, = 6 = -8 . (12. 22)

This relation has been referred to in § 8; numerical results for the shift
of frequency (or dispersion) associated with gas/particle interactions are
given in Table 8-1.

The main poiut here is that numerical results obtained with the ap-
proximate nonlinear .nalysis have shown that the nonlinear behavior raay »e
quite sensitive to the quantity 9n = -6wn , which has largely been ignored
in linear stability anclysis.

It should be clear that the relation 9n = -ow is true in general,

and rot just a specia. result for surface combustion. This can be seen di-
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rectly by returning to eq. (3. 15) for N, and retaining only the linear
terms incorporated in h and f used above:

o 2 ;2 r

Agtwn = -—=—{ [y hav+ By fas} . (12.23)

p.E
o n
For harmonic motions, n, = ﬁn exp(iakt) and because both h and f are
proportional to ﬁn , the factor can be dropped, so that (12. 18) becomes
. z 2 zz ~ -~
~(w-ie)+w © = - ___z{j‘whdv + ﬁvnf as] .
P oEn
The real and imaginary parts are once again (12.38) and (12. 9)
When the method of averaging is applied to (12. 18), the right hand

side is expressed as a combination of terms depending on n, or ﬁi , eqns,

(4. 1) and (4. 2); with only the linear terms retained, (12. 18) is

.. 2 . %“ .
T + “h ™y = ”Dnnnn'Ennﬂn - [Dnini + Enini] - (12.24)

The analysis developed in §4 leads to the first order differential equations
(4. 18) and (4. 19) for An and Bn . Those equations show that in general
there are terms representing linear coupling between the modes providing,
of course, that the coefficients Eni’ Eni don't vanish. These terms do not
arise in the usual linear stability analysis because the restriction is en-
forced from the beginning that the motion consists only of a wave having a
single frequency. If all the Dni and Eni are zero, or for the case of
longitudinal modes, the equations for the A and B _are eventually fcund

to be (12.21a,b), with
D

nn
@ = -— , Gn = - . (12.25)
The only remaining point to establish is that the @ n 20d Gn are the

same as defined by egns. (12.9) and (12.16). This is easily shown in
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special cases. To see that the equalities are true in general, begin with

the two expressions (12.23) and (12. 24) for the right hand sides, and

D.=E .=0:
nl1 n
3l r r
& _
D * +E n = Y {[ ¢ hav + e fas} . (12.26)
o n

Now the same argument is used for the left hand side of (12.26) as that

introduced first in the paragraph preceding eq. (7.7). Namely, the ap-

proximation is made ror harmonic motions, Th T iwnnn . Put another way,
because the Dn n’ Em: are already small quantities, and real, then for

harmonic motions,

" iarnt
D n =ixD n e .
nn n n nn n

The real and imaginary parts of (12. 26) are then

a ~ 2
D~ —2—5dm{f¢hav+ [[v fas} , (12.27)
p ¢ E
. N n
71.2 r > b
Enn ~~ —p'-‘E—z-ae {.; Vnhdv + ﬂ‘ﬁnfdf.} . (12. .8)
aon

Comparison with (12. 8) and (12. 16) shows immediately that a_ = -Dm,/Z
and Sn = -Enn/Z:un a- required.

12,2 Remarks on the Behavior of Solutions Obtained with the Approximate

Nonlinear Anal-sis

For the examnle given in §11. 1, in which all amplitudes reach
limiting values, the functions An(t) and Bn(t) both oscillate, with the same
amplitude and a phasc difference of w/2 after the limit condition has been
reached. This sort »f behavior has been most commonly found in cases
for which the motion eventually exccutes a limit cycle, There are examples,

as shown below, in which the Ar and Bn as well as the amplitudes
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JAn B tend in the li.uit to constant values. If a limit cycle does not
exist, there seems to be a wide variety of possible behavior. One example
has been given in §11.2; several more will be included in this section.

According to tae discussion in §12. 1, the linear behavior of the
functions An(t) and E.n(t) is oscillatory with expcaential growth or de.ay.
The frequency of the oscillation is Gn, the negative shift of the norma.
frequency W To sce this explicitly, note that t; definition,

An(t) = Gncos ¢n

(12.29)
Bn(t) = Gn sin ¢n
According to (12.22), ¢ = -Gn » 80 ¢ is a constant minus Gnt . Henc-e,

A and Bn both osci late at the frequency Gn . Another way of establishing
this result, and at th¢: same time incorporating the nonlinear in"uences,

may be had by combining the equations for A_ and B_; write these in the
n n

form
dAn
‘3 ¢ %At ean +f (12.730)
iBn
g = 9B -8B +g (12. 51)

where fn, g, stand for nonlinear terms and, in the general case, for iinear
coupling terms as well.

Differentiate {12.30) with respect to time and then use the two equa-
tions to eliminate B and én . A similar procedure can be applied to

(12.31). The two second-order equations for An and Bn are produced:

d A dA

_z_ -2a —d—-+(o +e )A = fn an£n+eng , (12. .,2)
dZB dBn 2

-—z— -Zan?f— +(i‘l. 'f‘e )B n = g O.ngn enn . (12. ,3)

dt
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These equations represent two coupled nonlinear oscillators asso-
ciated with each of the normal modes. The homogeneous solutions for the
lin=ar operators are

A_,B_ ~ emnt eie“t (12. 34)

n’ T n ' ‘

o hat for an unstable mode, the An’ Bn exhibit oscillatory growth or de-
cay. For cases in which the amplitudes A, Bn show the limiting behavior
note.l above, the nonlinear terms on the right hand side must be taken into
acccunt. If they have relatively small influence oa the frequency, then in
the limit cycle, both Al and Bn oscillate with frequency Gn , the negative
of the: frequency shift of the frequency for the primary oscilla.ors repre-
sented by the T, -

But if the motion does go into a limit cycle, the nonlinear term 3 on
the right hand sides ¢ (12.32) and (12. 33) must have some influence. A
pu -ely oscillatory bekavior would be produced by (12. 32) if the term
-Zuni\.n is exact'; corapensated and if the remainder of the right hand ;ide
cortridjutes a term proportional to An' It would be interesting and quite
likely very useful to determine the general conditions under which solutions
of that type do or do snot exist.

Equation ‘12, *4) shows that if Gn = 0, the functions An and Bn do
not oscillute when the motion is linear. There are cases in which tha. be-
havior persists when nonlinear influences are act:ounted for (see case (ii)
below); and there are conditions under which the A and B are not parely
os- latory even thouch Gn # 0 (case (iii) below). Again, quantitative zener-
alizations would protably be very useful for practical applications.

Crie way of atracking this problem would L2 to use the method «f

avera;ing to solve (1°.32) and (12.33). This would not give general r.:sults
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covering all possibilities, but it might yield information at least in respect
to the conditions for oscillatory behavior of An(t) and Bn(t) .

No formal results have been obtained for the general behavior of
the solutions. The practical importance of pursuing the problem lies in
the pcssibility for defining the ranges of values of the linear coefficients,
a and Bn » for which limit cycies exist; and for determining the dependence
of the limit amplitudes on those parameters.

In the absence of general results, the problem has been studied in
a very modest way simply by carrying out calculations for special cases.
Seven examples are iacluded here; the values of S and Bn are listed in
Table 12-1. Case (i} has been chosen as the reference because it exh:bits
the relatively nice oscillatory behavior of the functions An(t) and Bn(t) .
For each case, the results are shown for the amplitudes and for the hn(t);
the Bn(t) behave qualitatively like the An(t) in all cases. The calculations
were done for five modes, but to make the figures a bit less crowded, only
the curves for the first three modes are shown in Figures 12-4 to 12.7,

Note that in the reference case, Figure lc-1, the first mode is un-
stable and all higher modes are rather heavily damped with @ = -10¢ sec'l.
Case (ii), Figure 12-2, shows the change to non-oscillatory growth ot the
An(t) when On = 0. Cases (iii) through (vi), Figares 12-3 to 12-.6, show
the influence of makiang each of the higher modes neutrally stable. The re-
sults ieflect at least partly the strength of the coapling between the fi st
and each of the higher modes. Evidently the higl er odd modes are mre
strongly coupled to ti.e fundamental than are the higher even modes. With

a., or &

3 5 equal to zcro, the motions grow without limit; but when o, or

@, are zero, the mo-ion does reach limit cycles, although they differ in

4

detail. Even the qualitative aspects are not obvious from the equatious
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(6. 16) - (6.20) which have been solved.
Figure 12-7 for case (vii) is included as an illustration of somewhat
more erratic behavior which often ensues if more than one mode is un-
stable. Still more extreme cases have been encountered, but nothing can

be accomplished by mustering all the results which have been obtainec.
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